Современная спутниковая связь является одним из направлений развития радиорелейных коммуникаций. В данном случае это применение орбитальных спутников в качестве ретрансляторов.
Технологии спутниковой связи позволяют использовать один или несколько ретрансляторов для обеспечения качественной передачи радиосигнала на большие расстояния.
Все ретрансляторы можно разделить на две категории:
- пассивные. В настоящее время практически не используются. Изначально применялись исключительно как передаточное звено между наземной станцией и абонентом, не усиливали сигнал и не преобразовывали его;
- активные. Такие устройства дополнительно усиливают сигнал и всячески его корректируют, прежде чем отослать его абоненту. Большинство мировых спутниковых систем используют именно такой тип ретрансляторов.
История спутниковой связи
В конце 1945 года мир увидел небольшую научную статью, которая посвящалась теоретическим возможностям улучшения связи (в первую очередь, расстояния между приемником и передатчиком) благодаря поднятию антенны на максимальную высоту.
Какой же принцип работы имелся в виду?
Все довольно просто – на околоземную орбиту ученый предложил вывести большую антенну-ретранслятор, которая принимала бы сигналы от наземного источника и передавала бы его дальше.
Главным преимуществом являлась огромная зона покрытия, которую мог бы контролировать всего один спутник. Это существенно бы повысило качество сигнала, сняло бы лимит с количества принимающих станций и дополнительно не пришлось бы строить наземные ретрансляторы. США заинтересовались проектом в рамках решения проблем с трансатлантической телефонной связью.
Развитие спутниковых систем связи началось с запуска в космос первого аппарата «Эхо-1» (пассивный ретранслятор в виде металлизированного шара) в августе 1960 года.
Позже были разработаны ключевые стандарты спутниковой связи (рабочие частотные диапазоны), которые широко используются во всем мире.
Области применения спутниковой связи
С момента успешной реализации, качество спутниковой связи существенно выросло.
Благодаря внедрению мобильных наземных станций, абонент мог получать радиосигнал вне зависимости от места нахождения спутника в любое время суток, автоматически переходя из одной зоны покрытия к другой, подключаясь к ближайшему ретранслятору в автоматическом режиме.
Применение спутниковой связи можно разделить на несколько условных направлений:
- магистральная связь. Изначально ставилась задача в передачи большого объема информации (в частности, голосовых сообщений), но со временем при переходе на цифровой формат, такая надобность отпала и сегодня с этой области спутниковую связь вытесняют оптико-волоконные сети;
- VSAT. Так называемые «небольшие» системы с диаметром антенны до 2.4 метра. Технология успешно развивается, и служит для создания частных каналов связи;
- подвижная связь (основа телефонии и телевещания) ;
- доступ в Интернет .
Для получения большей информации по поводу развития этого направления связи, достаточно посетить профильное мероприятие. Международная выставка «Связь», которая проходит на территории ЦВК «Экспоцентр», является лучшим отраслевым событием международного уровня. Это гарантирует наличие широкой экспозиции и участие известных мировых и отечественных профильных компаний.
Как работает оборудование современной спутниковой связи
Спутниковая связь крепко ассоциируется в сознании многих людей с GPRS-навигаторами и телефонией. По-сути, это изобретение человечества и находит свою нишу в этих областях с точки зрения обывателей.
Сама концепция спутниковой связи зародилась ещё в 1945, однако на тот момент мало кто верил, что подобный канал передачи данных можно будет реализовать в жизни. Однако сейчас Земля окружена множеством спутников, обеспечивающих беспрерывный обмен информацией между сотнями людей и устройств.
Именно благодаря тому, что современная спутниковая связь имеет такое широкое покрытие, возможность совершать звонки из самых отдаленных уголков мира стала реальной. Ни один серьезный турист не рискнет предпринять далекое и опасное путешествие без спутникового телефона.
Также существует понятие спутникового Интернета – он делает возможным доступ к Всемирной паутине даже там, где свет есть исключительно благодаря генераторам.
Используя ресурсы и возможности спутниковой передачи информации, было создано множество вариантов навигаторов для самых различных отраслей.
Фактически современная спутниковая связь состоит всего из трех элементов: передатчика, ретранслятора и приемника. В роли передатчика и приемника выступают различные устройства: мобильные телефоны, вычислительные машины, антенны и так далее.
Ретранслятор же представлен в виде спутника, который принимает входящий сигнал от земной станции (или устройства) и в широковещательном режиме передает его на всю видимую область. Далее в силу вступает техническое и программное обеспечение, которое заботится о том, чтобы данная информация попала точно к адресату. Исключение составляют случаи, когда сигнал должны получить все приемники. Например, спутниковое телевидение.
Для большей пропускной способности ретранслятора были внедрены следующие системы множественного доступа (МД):
- МД с частотным разделением. Каждый пользователь получает свою частоту.
- МД с временным разделением. Пользователь имеет право принимать или передавать данные только в определенный промежуток времени.
- МД с кодовым разделением. Каждому пользователю выдается код. Он накладывается на данные так, что сигналы различных пользователей не смешиваются даже при передаче на одной частоте.
В целом, все вышеприведенные системы гарантируют многократное использование частот, что повышает эффективность и пропускную способность.
При передаче информации также учитывается поглощение волн в атмосфере и размеры принимающей антенны – для каждого определенного случая используется своя частота.
Международная спутниковая связь
Международная спутниковая связь – это вид радиорелейной коммуникации, которая основана на применении искусственных спутников земли, как ретрансляторов. Связь происходит между станциями, находящимися на земле, что в свою очередь бывают стационарными и подвижными. Технология позволяет передавать радиосигнал на любое расстояние, даже самое масштабное.
На сегодняшний день самым распространенным видом является активный ретранслятор. Он значительно усиливает и корректирует поступающий сигнал перед тем, как он дойдет до абонента. Большинство спутниковых систем мира используют именно такой вид спутников.
Начало такой технологии было положено английским ученым Артуром Кларком, который написал статью «Внеземные ретрансляторы». Принцип заключался в том, что антенну необходимо было вывести на максимально дальнее расстояние на околоземной орбите, что позволяло бы принимать сигналы от наземных источников и передавать их дальше. Главной особенностью являлось то, что один спутник мог контролировать достаточно большую зону покрытия земного шара.
Первым пассивным ретранслятором был аппарат «Эхо-1», который был запущен в космос в 1960-м году. Это положило начало дальнейшему стремительному развитию международной спутниковой связи.
Области применения международной спутниковой связи
С того момента, как в космос был запущен первый искусственный спутник, качество технологии значительно улучшилось. Сегодня человечество не представляет повседневной жизни без мобильного телефона (который победоносно вытеснил домашние стационарные), без видео чатов, помогающих общаться с человеком на расстоянии в реальном времени, без телевидения и т.д.
Современное использование международной спутниковой связи разделяют на следующие ключевые направления:
- магистральная связь;
- система подвижной спутниковой связи;
- VSAT (небольшая система с антенной диаметром до 2.4 м, служащая для создания частного канала);
- мобильная сеть;
- Интернет (с помощью данной системы работает большинство современных технологий).
Международная спутниковая связь является одним из тематических направлений тематического мероприятия, которое ежегодно проходит в стенах Центрального выставочного комплекса «Экспоцентр».
Тематическое разнообразие охватывает все категории связной отрасли:
- интернет-технологии;
- программное обеспечение;
- сети для передачи данных;
- стартапы;
- телекоммуникационная инфраструктура;
- услуги в области IT-технологий;
- связное оборудование и современные технологии.
Возможности современной международной спутниковой связи
Современная высокотехнологическая международная спутниковая связь предоставляет возможности:
- обмениваться информацией;
- управлять и координировать воздушные и морские судна, а также наземный транспорт;
- способность передавать большие объемы информации на другой край света;
- получать высокое и стабильное качество сигнала;
- осуществлять безопасные коммуникации и т.д.
Новинки спутниковой связи Российской Федерации
Спутниковая связь оказывает неизбежное влияние на развитие разных индустриальных сфер, экономический рост государства и уровень жизни наций.
На сегодня формирование рыночного сегмента спутниковой связи невообразимо без сообщения с наземной сетевой системой. Любые изменения структуры сети могут основательно воздействовать на качество работы спутников.
Спутниковая связь имеет следующие последние нововведения:
- оптически-волоконные сети обусловили частичное вытеснение спутниковых магистралей;
- распространение антенных станций VSAT (Very Small Aperture Terminal);
- усовершенствование энергетической вооруженности космических аппаратов и их способности пропускать дистанционные сигналы с точек земли;
- спутники широких полос действия, оснащенные ретранслятором;
- средства с большими диапазонами частот;
- освоение орбит средней высоты.
Все эти инновационные приспособления привели к возможности обработки множества сигналов в космосе посредством между лучевых коммутаторов.
Благодаря последним механизмам передачи изображений видеофайлов бесплатное онлайн общение стало привычным для нынешнего времени.
Рыночные сегменты спутниковой связи Российской Федерации
Спутниковая связь в РФ в экономическом отношении разделяется на три больших сегмента рынка информационных технологий и коммуникаций.
- Первый сегмент основан благодаря соединению наземных станций на территории государства с развивающимися в положительной динамике спутниковыми комплексами Global Star, Inmarsat, Ellipse. Из них формируются компактные терминалы личной связи, сопрягающиеся с мобильными устройствами телерадиовещания. Спутники системы локализуются над океанами для качественного снабжения интернет-сигналами больших радиусов земли. В системе имеется телефон, который настроен на один из спутников. Терминалы связи с крупными антеннами улавливают сигнал и раздают его абонентам в любой точке земли.
- Во втором сегменте сделан акцент на производство малых спутниковых наземных терминалов (VSAT), предназначенных для формирования корпоративных сетей с защищенным доступом. Ныне на территории РФ по данным «Национального союза спутниковой связи» насчитывается таких станций около 3,2% от общего количества в мире (500 тысяч).
- В третьем сегменте изобретаются и внедряются в производство спутники, станции малого формата и их системы, обуславливающие телерадиовещание, дистанционные онлайн коммуникации. Стоимость оборудования для данной рыночной ниши в разы ниже терминалов предыдущих двух сегментов. Учитывая географическое преимущество малых населенных пунктов относительно всей площади страны, телевизионная инфраструктура приносит максимальную прибыль среди всех видов контактов.
На российском рынке коммуникации имеют немаловажное значение для экономического развития зоны, где распространяются сигналы, обрабатываемые многорежимными терминалами.
Сигнал из сети удаленного управления RAT (Remote Administration Tool) разделяется на коды в каналах CDMA (Code Division Multiple Access) и путем сканирования облегчает проведение поисковых вызовов в циклах, соединенных между собой в отдельный RAT. С этими районами выгодно сообщать места, где отсутствует прием сотового сигнала.
Многорежимные терминалы абонентов беспроводной связи способны повысить эффективность межсетевого переключения, увеличить доступ к различным услугам.
Современное оборудование для приема и передачи спутниковой связи на выставке
Современная спутниковая связь служит замечательным способом передачи информации, однако выдвигает повышенные требования к аппаратуре.
Выставка «Связь» предоставляет возможность ознакомиться с самыми последними разработками и предложениями от различных производителей оборудования для спутниковой связи.
В стенах «Экспоцентра» выставлен широкий ассортимент образцов различной ценовой категории, так что любой желающий сможет найти наиболее оптимальный вариант с точки зрения качества и цены.
Выставка «Связь» проводится на протяжении более трех десятков лет и служит мощным двигателем в эффективном развитии данной технической области.
Читайте другие наши статьи:2.1 VSAT (Very Small Aperture Terminal)
VSAT-станция - станция спутниковой связи с антенной малого диаметра, порядка 1.8 ... 2.4 м. VSAT-станция используются для обмена информацией между наземными пунктами, а также в системах сбора и распределения данных. ССС с сетью земных станций типа VSAT обеспечивают телефонную связь с цифровой передачей речи, а также передачу цифровой информации. При передаче телефонного трафика спутниковые системы образуют групповые тракты (совокупность технических средств, обеспечивающих прохождение группового сигнала, т.е. несколько телефонных подканалов объединяются в один спутниковый) и каналы передачи (совокупность средств, обеспечивающих передачу сигналов от одной точки в другую).
Каналы и групповые тракты ССС широко используются на участках магистральной и внутризоновой телефонных сетей. В ряде случаев на местных линиях связи ССС позволяют: организовать прямые закрепленные каналы и тракты между любыми пунктами связи в зоне обслуживания ИСЗ. А также работать в режиме незакрепленных каналов, при котором спутниковые каналы и тракты могут оперативно переключаться с одних направлений на другие при изменении потребностей трафика на сети, а также использоваться наиболее эффективно - полнодоступными пучками.
К настоящему времени создано несколько ССС с использованием VSAT. Одной из типичных систем такого рода является система, организованная на базе геостационарных спутников. VSAT, работающие в составе данной системы, установлены в ряде стран, в том числе и в России.
Привлекательной особенностью станций VSAT является возможность их размещения в непосредственной близости от пользователей, которые благодаря этому могут обходиться без наземных линий связи.
Кроме систем с закрепленным каналом, эффективных при постоянной передаче информации на высоких скоростях (10 кбит/с и более), существуют системы, использующие временное, частотное, кодовое или комбинированное разделение канала между многими абонентскими ЗС.
Еще одним параметром, позволяющим классифицировать ССС, является использование протокола. Первые спутниковые системы были беспротокольными и предлагали пользователю прозрачный канал. Недостатком таких систем являлась, например, передача информации пользователя без, как правило, подтверждения ее доставки принимающей стороной. Иначе говоря, в подобных системах не оговорены правила диалога между участниками обмена информацией. В этом случае качество ССС определяется качеством спутникового канала. При типичных значениях вероятности ошибки на символ в пределах 10-6..10-7 передача больших файлов через спутниковые системы, даже с использованием различных помехоустойчивых кодов затруднена, если не сказать, что невозможна.
Спутниковая станция типа VSAT по конструктивному признаку состоит из высокочастотного (ODU) и низкочастотного (IDU) модуля. ODU, состоящий из антенны и приемопередатчика, размещается вне здания, в котором устанавливается IDU, состоящий из модема и мультиплексора (каналообразующей аппаратуры).
Стандартный вариант комплектации включает параболическую антенну небольшого диаметра и приёмопередатчик. В зависимости от месторасположения спутниковой станции по отношению к центру зоны освещения спутника и скорости передачи в канале используются более мощные передатчики или антенны большего диаметра. В помещении устанавливается модем и мультиплексор. ODU и IDU соединены между собой радиочастотными (RF) кабелями. По ним идет сигнал промежуточной частоты (IF). IF бывает 70 или 140 МГц.
Внешний блок. Внешний, или как его иногда называют высокочастотный блок, состоит из антенны и приемопередающего блока, который устанавливается на этой антенне. Приемопередающий блок обеспечивает преобразование низкочастотного сигнала, его усиление и передачу “вверх”. Также прием высокочастотного сигнала со спутника его преобразование в низкочастотный и передачу к внутреннему блоку. Антенна. Однозеркальная антенна обычно выполняется по схеме офсет (со смещенным центром). Схема офсет позволяет снизить уровень боковых лепестков идущих параллельно земли и дающих максимальные помехи. Также данная схема позволяет избежать накопления атмосферных осадков на поверхности рефлектора. связь спутниковый цифровой сигнал
Антенна состоит из:
- * рефлектора (зеркала);
- * системы облучения;
- * опорно-поворотного основания (ОПО).
Основной терминал состоит из:
- * СВЧ блока преобразования частот;
- * усилителя мощности (SSPA или TWT);
- * малошумящего конвертора (LNC);
- * блока электропитания (PS);
- * соединительных кабелей.
Функция приемопередатчика заключается в преобразовании, после модулятора, сигнала IF, на конверторе вверх, в RF сигнал для передачи через антенну и в преобразовании полученного RF сигнала в сигнал IF, на конверторе вниз, для блока, используемого как демодулятор.
Внутренний блок. Внутренний блок представляет собой 19” стойку с установленными в ней спутниковым модемом и мультиплексором. Иногда в стойке устанавливается и дополнительное оборудование сумматоры, вентиляторы, UPS и т.п. UPS может устанавливаться и вне стойки, отдельно.
Спутниковый модем. Спутниковый модем, в части модулятора предназначен для кодирования передаваемого цифрового потока, пришедшего из мультиплексора, модулирования сигнала по IF, необходимого усиления и передачи сигнала на внешний блок. И приема сигнала IF из внешнего блока, усиления его, демодулирование в цифровой сигнал, декодирование и передачу в мультиплексор, в части демодулятора.
Мультиплексор. Мультиплексор предназначен для мультиплексирования голосовой, факсимильной информации и передаваемых данных. Мультиплексор позволяет скомбинировать ежедневные телефонные и факсимильные сообщения с синхронной и асинхронной передачей данных в один канал, предаваемый по локальным сетям, наземным или спутниковым линиям. Это позволяет снизить телекоммуникационные затраты путем увеличения возможностей передачи важной информации и одновременного уменьшения пропускной способности канала.
Спутниковый Шлюз. Для выхода на сети наземных телекоммуникаций используются спутниковые шлюзы (большие станции к которым подключены через спутник VSAT-станции).
Шлюз может обеспечивать обеспечивает:
- * выход на телефонные сети;
- * услуги междугородной связи с выходом на сеть общего пользования;
- * услуги международной телефонной связи;
- * выход на специальные телефонные сети, например "Искра-2";
- * выход на сети передачи данных (РОСНЕТ, INTERNET, RELCOM и др.);
- * возможность аренды наземного канала до любой точки.
Высокоскоростной выход на INTERNET и другие сети передачи данных.
Шлюз позволяет обеспечить высокоскоростной выход на INTERNET, до 2 Мбит/сек. В данном варианте, возможно, получить доступ ко всем услугам INTERNET (WWW, TelNet, E-mail, FTP и др.). Все описанное выше, также относится и к другим глобальным сетям передачи данных. VSAT - это небольшая станция спутниковой связи с антенной диаметром 0,9 - 3,7 м, предназначенная, главным образом, для надежного обмена данными по спутниковым каналам. Она не требует обслуживания и подключается напрямую к терминальному оборудованию пользователя, выполняя роль беспроводного модема.
Как работает сеть VSAT. Сеть спутниковой связи на базе VSAT включает в себя три основных элемента: центральная земная станция (при необходимости), спутник-ретранслятор и абонентские VSAT терминалы.
Центральная земная станция (ЦЗС). Центральная земная станция в сети спутниковой связи на базе выполняет функции центрального узла и обеспечивает управление работой всей сети, перераспределение ее ресурсов, выявление неисправностей, тарификацию услуг сети и сопряжение с наземными линиями связи. Обычно ЦЗС устанавливается в узле сети, на который приходится наибольший трафик (рис.16).
Каналообразующая аппаратура обеспечивает формирование спутниковых радиоканалов и стыковку их с наземными линиями связи. Каждый из поставщиков систем спутниковой связи применяет свои оригинальные решения этой части ЦЗС, что часто исключает возможность использования для построения сети аппаратуру и абонентские станции других фирм. Обычно эта подсистема строится по модульному принципу, что позволяет по мере роста трафика и количества абонентских станций в сети легко добавлять новые блоки для увеличения ее пропускной способности. Центр управления сетью обеспечивает контроль за работой сети, выявление неисправностей, перераспределение ее ресурсов между абонентами, тарификацию предоставляемых услуг и т.п.
Абонентская станция VSAT. Абонентский VSAT терминал обычно включает в себя антенно-фидерное устройство, наружный внешний радиочастотный блок и внутренний блок (модем). Внешний блок представляет собой небольшой приемо-передатчик или приемник. Внутренний блок обеспечивает сопряжение спутникового канала с терминальным оборудованием пользователя (компьютер, сервер ЛВС, телефон, факс УАТС и т.д.).
Спутник ретранслятор. Сети VSAT строятся на базе геостационарных спутников-ретрансляторов. Это позволяет максимально упрощать конструкцию абонентских терминалов и снабжать их простыми фиксированными антеннами без системы слежения за спутником. Спутник принимает сигнал от земной станции, усиливает его и направляет назад на Землю. Важнейшими характеристиками спутника являются мощность бортовых передатчиков и количество радиочастотных каналов (стволов или транспондеров) на нем. Стандартный ствол имеет полосу пропускания 36 МГц, что соответствует максимальной пропускной способности около 40 Мбит/с. Мощность передатчиков колеблется от 20 до 100 и более ватт. Для обеспечения работы через малогабаритные абонентские станции типа VSAT требуются передатчики с выходной мощностью около 40 Вт. Действующие российские спутники имеют передатчики меньшей мощности, поэтому большое количество российских сетей строятся на базе зарубежных спутников.
2.2 SCPC (Single Channel per Carrier)
SCPC (Single Channel per Carrier, один канал на несущую) - классическая технология спутниковой связи. Сущность ее очень проста: для связи двух земных станций А и В на спутнике выделяются две полосы частот: одна для передачи в направлении А-В, другая - для передачи в направлении В-А.
Эти полосы частот «монопольно» используются только станциями А и В и не могут быть использованы кем-то еще. Таким образом, SCPC - выделенный физический канал связи.
В России и в Европе существуют сети VSAT-станций, работающих на принципе SCPC. Стандартный вариант связи SCPC где используется связь по принципу “point-to-point” (“точка-точка”) - это две VSAT-станции, соединенные спутниковым каналом и расположенные у пользователей.
При наличии такого канала пользователи могут устанавливать связь друг с другом в любой момент. Чаще приходится иметь дело с конфигурацией сети типа “звезда” (принцип “центр с каждым”), когда имеется одна станция в головном офисе (отделении, представительстве и т.п.) и несколько станций в удаленных отделениях, филиалах. При использовании данной схемы возможна организация потоков цифровой информации со скоростью от 32 кбит/сек до 8 Мбит/с и обеспечение телефонной, телефаксной связи между центром и периферией. Данная система открывает возможность выхода через спутниковые станции на международный телепорт в Берлине и далее в любую страну мира. Кроме этого возможно получение прямого московского номера и через телепорт в Москве возможно ведение телефонных переговоров по странам бывшего СССР. В целом следует отметить, что SCPC-система является очень мощной альтернативой арендованных некоммутируемых каналов, ведомственных линий и т.п. Весьма привлекательна она как средство передачи больших объемов информации с высокой скоростью. Вследствие использования спутниковых цифровых каналов, она является некритичной к дальности и помехозащищенной.
Подключение удаленной базовой станции сотовой связи. Это единственный способ подключения удаленной базовой станции сотовой связи через спутник, который гарантирует качественную связь и функционирование всех сервисов сотового оператора в полном объеме. Используется пара модемов с последовательными синхронными интерфейсами G.703, через которые передается цифровой поток Е1 (2048 кбит/с), полный или дробный.
Канальный доступ в Интернет. Спутниковый канал SCPC можно использовать в качестве внешнего канала доступа в Интернет для провайдерского узла в регионе. Как правило, в этом случае спутниковый канал связи «приземляется» на узел крупного оператора связи в Москве. Обычно у такого оператора есть центральная земная станция с антенной больших размеров и мощным передатчиком. За счет этого его клиент в регионе может использовать земную станцию с антенной несколько меньших размеров.
Спутниковая сеть радиовещания. PC Audio- классическая технология доставки сигналов сетевой FM-радиостанции ее партнерам-ретрансляторам в других городах. Особенно актуально использование SCPC для региональных радиостанций, у которых студии находятся не в Москве. Аренда спутникового канала SCPC обходится дешевле, чем аренда такого же по скорости канала любой другой технологии. Правда, на приемных станциях приходится использовать довольно дорогое специфическое оборудование. Однако, станций-ретрансляторов, как правило, немного, и стоимость единожды купленного оборудования быстро окупается экономией на платежах за связь. Земная станция спутниковой связи, установленная в студии, работает только на передачу. На ней устанавливается обычный спутниковый модем с последовательным интерфейсом RS-449 и кодер ComStream DAC700, который преобразует звук в последовательный цифровой поток со скоростью 128…392 кбит/с. Используется цифровое сжатие звука MPEG-1 Layer3. На станциях-ретрансляторах устанавливаются обычные приемные спутниковые антенны - такие же, как для спутникового телевидения. К антенне подключается специфический приемник ComStream ABR202, который сочетает в себе однонаправленный спутниковый модем и декодер MPEG. Между модемом земной станции и сетевым оборудованием провайдера устанавливается маршрутизатор.
TES-система предназначена для обмена телефонной и цифровой информацией в сетях, что построены по принципу “mesh” (“каждый с каждым”) или, другими словами, в сетях с полным доступом. Это означает, что возможна телефонная связь между любыми двумя абонентами сети, кроме этого абонентам обеспечивается выход в международную сеть общего пользования через телепорт (Gateway) в Берлине. В простейшей конфигурации обеспечивается связь по одному телефонному или факсимильному каналу. Абоненту предоставляется дополнительная возможность организации передачи цифровой информации между двумя станциями, входящими в сеть. Сеть работает по принципу DAMA - когда абонент не имеет жестко закрепленного за ним спутникового канала, а этот канал предоставляется ему по первому требованию, причем с высокой (более 99 %) вероятностью. Этот способ позволяет уменьшить число арендуемых спутниковых каналов и обеспечить приемлемые цены для абонентов. В целом, использование именно TES-системы является самым оперативным и действенным способом доступа в международную телефонную сеть, а также хорошим средством связи с теми областями, которые обладают либо неразвитой инфраструктурой связи, либо вообще не имеют таковой.
Система персональных земных станций (Personal Earth Station) PES™- спутниковая диалоговая пакетно-коммутируемая сеть, предназначенная для обмена телефонной и цифровой информацией в рамках ССС с топологией типа "звезда", с возможностью полного дуплекса. Система располагает крупной и дорогой центральной станцией (HUB station) и многими небольшими и недорогими периферийными станциями PES или remote. Большая эффективная излучаемая мощность высокое качество приема центральной станции делает возможным применение на PES малых антенн диаметром 0,5-1,8 м и маломощных передатчиков мощностью 0,5-2 Вт.
Это значительно снижает стоимость абонентской ЗС. В отличие от других вышеназванных систем, в этой передача информации всегда идет через HUB. С точки зрения энергетики системы и ее стоимости (соответственно и стоимости предлагаемых услуг) оптимально расположение центральной ЗС в центре зоны освещения спутника. Например, в сети, работающей через спутник INTELSAT-904, центральная ЗС расположена в Москве.
Достоинства СКС:
Спутниковые системы связи могут различаться также и типом передаваемого сигнала, который может быть цифровым или аналоговым. Передача информации в цифровой форме обладает рядом преимуществ по сравнению с другими методами передачи. К ним относятся:
- * простота и эффективность объединения многих независимых сигналов и преобразования цифровых сообщений в “пакеты” для удобства коммутации;
- * меньшие энергозатраты по сравнению с передачей аналогового сигнала;
- * относительная нечувствительность цифровых каналов к эффекту накопления искажений при ретрансляциях, обычно представляющему серьезную проблему в аналоговых системах связи;
- * потенциальная возможность получения очень малых вероятностей ошибок передачи и достижения высокой верности воспроизведения переданных данных путем обнаружения и исправления ошибок;
- * конфиденциальность связи;
- * гибкость реализации цифровой аппаратуры, допускающая использование микропроцессоров, цифровую коммутацию и применение микросхем с большей степенью интеграции компонентов.
Недостатки СКС:
Слабая помехозащищённость. Огромные расстояния между земными станциями и спутником являются причиной того, что отношение сигнал/шум на приемнике очень невелико (гораздо меньше, чем для большинства радиорелейных линий связи). Для того чтобы в этих условиях обеспечить приемлемую вероятность ошибки, приходится использовать большие антенны, малошумящие элементы и сложные помехоустойчивые коды. Особенно остро эта проблема стоит в системах подвижной связи, так как в них есть ограничение на размер антенны и, как правило, на мощность передатчика.
Влияние атмосферы. На качество спутниковой связи оказывают сильное влияние эффекты в тропосфере и ионосфере. Поглощение в тропосфере. Поглощение сигнала атмосферой находится в зависимости от его частоты. Максимумы поглощения приходятся на 22,3 ГГц (резонанс водяных паров) и 60 ГГц (резонанс кислорода). В целом, поглощение существенно сказывается на распространении сигналов с частотой выше 10 ГГц (то есть, начиная с Ku-диапазона). Кроме поглощения, при распространении радиоволн в атмосфере присутствует эффект замирания, причиной которому является разница в коэффициентах преломления различных слоев атмосферы.
Ионосферные эффекты. Эффекты в ионосфере обусловлены флуктуациями распределения свободных электронов. К ионосферным эффектам, влияющим на распространение радиоволн, относят: мерцание, поглощение, задержку распространения, дисперсию, изменение частоты, вращение плоскости поляризации. Все эти эффекты ослабляются с увеличением частоты. Для сигналов с частотами, большими 10 ГГц, их влияние невелико.
Задержка распространения сигнала. Проблема задержки распространения сигнала, так или иначе, затрагивает все спутниковые системы связи. Наибольшей задержкой обладают системы, использующие спутниковый ретранслятор на геостационарной орбите. В этом случае задержка, обусловленная конечностью скорости распространения радиоволн, составляет примерно 250 мс, а с учетом мультиплексирования, коммутации и задержек обработки сигнала общая задержка может составлять до 400 мс. Задержка распространения наиболее нежелательна в приложениях реального времени, например, в телефонной связи. При этом если время распространения сигнала по спутниковому каналу связи составляет 250 мс, разница во времени между репликами абонентов не может быть меньше 500 мс.
В некоторых системах (например, в системах VSAT, использующих топологию «звезда») сигнал дважды передается через спутниковый канал связи (от терминала к центральному узлу, и от центрального узла к другому терминалу). В этом случае общая задержка удваивается.
3 Обобщенная характеристика состояния и тенденций развития ССС
Для организации каналов связи преимущественно используются космические аппараты (КА), расположенные на геостационарной орбите (ГСО). Возможности создания телекоммуникационных сетей на основе спутников на негеостационарных орбитах ограничены незначительной зоной обслуживания, невозможностью предоставления услуг на постоянной основе и рядом других факторов. Большинство этих факторов может быть устранено при использовании группировки спутников, но появляется необходимость слежения за ними. Преимущественно такие группировки используются для организации подвижной связи и радиовещания. Наибольшие из них Iridium (88 КА), Globalstar (48 КА), Orbcomm (31 КА). Для предоставления телекоммуникационных услуг, в особенности вещания, используются геостационарные спутниковые системы связи.
Ежегодно на ГСО выводится от 15 до 30 КА и завершают свою работу 10-15 спутников. За последние 10 лет ежегодный усредненный прирост количества КА составил около 3 %. Однако, при рассмотрении вопроса о росте потребностей в спутниковых каналах, чем обуславливаются запуски КА, следует учитывать не абсолютный прирост, а возможности выводимых на ГСО спутников. Наблюдается тенденция к запуску более эффективных в отношении прибыль/цена «тяжелых» КА, имеющих телекоммуникационную полезную нагрузку около 50 стволов и более. Из 83 работающих «тяжелых» КА 69 было выведено на орбиту после 2000 года (33 % от общего количества запусков).
По состоянию на начало марта 2011 года на геостационарной орбите (ГСО) в различных службах функционирует 319 спутников-ретрансляторов гражданского назначения. Услуги телекоммуникаций предоставляют 67 международных и национальных операторов, которым принадлежат 89 спутниковых систем связи. ССС зарегистрированы в 35 странах, перечень которых приведен в Приложении А.
В список стран, приведенный в Приложении А, следует включить Казахстан, Нигерию, Аргентину, потерявшие к настоящему времени свои спутники, но восстанавливающих функционирование ССС. В этом году Казахстан в рамках национальной системы спутниковой связи Kazsat выведет на ГСО два КА, Нигерия в рамках Nigcomsat - три КА. Аргентина строит новую систему спутниковой связи Arsat в составе трех КА. Спутники, находящиеся на ГСО, имеют около одиннадцати тысяч транспондеров разных служб, мощности и емкости, из которых задействовано около 8000 столов. Поскольку транспондеры значительно отличаются полосой частот, то более приемлемым критерием для оценки распределения является суммарная полоса частот стволов.
По состоянию на конец февраля 2011 г. общий частотный ресурс транспондеров выведенных на ГСО спутников достигла примерно 450 ГГц полосы частот, из которого более половины в диапазоне Ku (51,4 %), 35,1 % в диапазоне С и 12,0 % в диапазоне Ka.
При ежегодном увеличении количества действующих КА на 3 % ежегодный прирост частотного ресурса заметно больше, примерно 13 %, что связано с запуском «тяжелых» КА. За десять лет общая полоса спутниковых каналов выросла примерно в два раза. В диапазонах Ku и C наблюдается почти линейный рост суммарной емкости, более интенсивными темпами внедряется диапазон Ka.
Тенденции к монополизации на рынке спутниковых телекоммуникаций начали проявляться с 2001 года после слияния SES Astra с GE Americom и образования корпорации SES Global. В 2006 г. корпорация приобрела ССС NSS, в 2009 г. - часть расформированной ССС Protostar, а в марте 2010 г. полностью выкупила ССС Sirius. Кроме того SES Global владеет 70 % акций ССС Ciel и 49 % акций оператора Quetzsat, планирующего запуск первого КА в 2011 г.
Международная организация INTELSAT после приобретения в 2003 г. части ССС Telstar (4 КА) и слияния с PanAmSat (2005 г.) стала наибольшим спутниковым оператором. Дополнительно в 2009 г. организация выкупила три КА Amos 1, Protostar 2 и JCSat 4R.
Третий по величине оператор EUTELSAT проявил заинтересованность в приобретении ССС Satmex, под его контролем находится около трети активов оператора Hispasat.
Канадский оператор Telesat в 2007 г. приобрел остатки ССС Telstar (4 КА) и стал четвертым в мире международным оператором.
В 2008 г. японские операторы JSAT и SCC (ССС Superbird) образовали корпорацию JSAT Perfec Pro, в которую входит также ССС NSat и частично ССС Horizons.
В 2006 г. оператор Cablevision перешел под управление оператора Echostar, который большей своей частью входит в корпорацию Dish Network, находящуюся под контролем группы DIRECTV, владеющей ССС DTV и контролирующей ССС Spaceway. Можно говорить о практическом объединении трех систем DTV, Echostar и Spaceway.
В 2010 г. три китайских оператора систем Chinasat, Sinosat, Chinastar объединились и создали новую организацию Chinasat.
В 2010 году было объявлено образование новой организации Sirius XM Radio после слияния XM Satellite Radio и Sirius FM Radio. Космический флот данного оператора кроме шести геостационарных спутников включает четыре низкоорбитальных КА.
Имеющаяся тенденция к монополизации не является сдерживающим фактором развития малых по количеству КА ССС. Планируется не только запуск спутников на замену отработавшим свой срок, но и создание новых систем, включая национальные ССС.
В течение последующих трех лет ожидается пополнение списка стран создающих национальные системы спутниковой связи:
- - 2011 г., Иран: ССС Zohreh (2 КА);
- - 2011 г., ОАЭ: ССС Yachsat (2 КА);
- - 2011 г., ОАЭ совместно с Иорданией: ССС SmartSat (1 КА);
- - 2012 г., Украина: ССС Lybid (1 КА);
- - 2012 г., Азербайджан: ССС AzerSpace, (2 КА), один КА совместно с Малайзией;
- - 2013 г., Катар: ССС Eshail (1 КА), совместно с Eutelsat;
- - 2013 г., Боливия: ССС Tupac Katani (1 КА);
- - 2013 u/? Kfjc^ CCC Laosat (1 RF)
Страны, имеющие спутниковые группировки, в соответствии с потребностями рынка создают новые системы:
- - 2011 г., Россия: ССС Luch (3 КА) для услуг передачи данных;
- - 2011 г., США: Viasat (2 КА) для предоставления услуг высокоскоростного доступа;
- - 2011 г., Мексика: ССС QuetzSat (1 КА) для предоставления услуг вещания и фиксированной связи;
- - 2012 г., США: ССС Jupiter (1 КА) и ССС OHO (3 КА) для предоставления услуг высокоскоростного доступа и телевидения высокой четкости;
- - 2012 г., Мексика: ССС Mexsat (3 КА), которые будут работать в подвижной, фиксированной и вещательной службах;
- - 2012 г., Австралия: ССС Jabiru (1 КА) для предоставления услуг вещания и фиксированной связи;
- - 2013 г., ОАЭ: S2M (1 КА) для предоставления услуг вещания мобильным пользователям;
- - 2013 г., Канада: ССС Canuk (1 КА) для системы высокоскоростного доступа.
В рамках системы подвижной связи Inmarsat новая серия КА пятого поколения и два КА Alfasat и Europesat ориентируются на новый для данного оператора вид услуг - вещание на подвижные объекты.
Приоритетным видом услуг остается спутниковое вещание. Кроме стандартного набора услуг непосредственного вещания, раздачи программ на сети наземного эфирного и кабельного вещания через спутники ETS 8 и MBSat уже ведется экспериментальное телевизионное вещание на подвижные объекты. Для оказания такого вида услуг планировался запуск трех КА (Eutelsat 2A, Echostar 13 или CMBstar и S2M 1), из которых Eutelsat 2A был запущен, однако неполадки с развертыванием антенны не позволили начать реализацию услуг в европейском регионе. Спутниковые каналы интенсивно используются для предоставления услуг высококачественного и интерактивного вещания, началось внедрение 3D-телевидения.
Вторым по приоритетности стало предоставление услуг высокоскоростного доступа. К функционирующим специализированным спутникам WildBlue 1, Spaceway 3, IPStar 1, недавно выведеных на ГСО КА Eutelsat KaSat и Hylas добавятся ориентированные на эти услуги спутники Viasat (2 КА), OHO (3 КА), Canuk, 3 КА Inmarsat пятого поколения, Jupiter и другие.
Дальнейшее направление развития спутниковых телекоммуникационных систем связывается с конвергенцией услуг и функций систем, далеких по принципам действия и назначениям, путем взаимопроникновения и использования общих технико-технологических решений. Конвергенция будет всё больше стирать различия между отдельными видами услуг, все сети будут предоставлять любой их вид в значительно расширенной номенклатуре и в большем объеме на основе единой технологической платформы, обеспечивающей развитие интерактивного и непосредственного вещания, высококачественного вещания, систем высокоскоростного доступа, дистанционного обучения, телемедицины, телебанкинга и прочих мультисервисных приложений. Корпоративный характер данных услуг из единого центра на пользовательскую сеть делает спутниковые системы связи наиболее пригодными для их предоставления. Новые услуги займут до 80 % спутникового ресурса.
Общий прирост объемов услуг спутниковых каналов за пятилетие составляет 76 %, а увеличение доходов по службам телекоммуникации соответственно составляет: ССВ - 82 %, ФСС - 97 %, ПСС - 29 %. Отметим, что приведенные в таблице 2 данные по услугам доступа относятся к предоставляемым по каналам вещания. Данный вид услуг в значительной мере также обеспечивается и каналами фиксированной связи, что в таблице отдельной графой из-за отсутствия информации не отмечено. Основную долю доходов ССС в 2009 г. (81 %) обеспечивает спутниковая служба вещания (ССВ), что подчеркивает степень ее приоритетности. Распределение уровня доходности между службами по опубликованным за последние пять лет данным Satellite Industry Association приведено в Приложении Б. Следует подчеркнуть, что телекоммуникационные услуги по спутниковым каналам определяют основные доходы от деятельности в космической отрасли индустрии. Из общего объема доходов равного 160,9 млрд. долл., доля от доходов телекоммуникаций составляет 58,2 %.
Возросла энерговооруженность КА. Мощности стволов в наиболее используемых диапазонах в среднем составляет: Ku 120 - 150 Вт, C - 50 - 60 Вт. Удельная мощность, приходящаяся на единицу полосы, достигла 1,2 Вт/МГц, что дает возможность использования в канале более эффективных многопозиционных сигналов и высокоскоростных каскадных кодов.
Магистральная спутниковая связь. Изначально возникновение спутниковой связи было продиктовано потребностями передачи больших объёмов информации. Первой системой спутниковой связи стала система Intelsat, затем были созданы аналогичные региональные организации (Eutelsat, Arabsat и другие). С течением времени доля передачи речи в общем объёме магистрального трафика постоянно снижалась, уступая место передаче данных.
С развитием волоконно-оптических сетей последние начали вытеснять спутниковую связь с рынка магистральной связи.
Системы VSAT. VSAT (Very Small Aperture Terminal)- малая спутниковая наземная станция, то есть терминал с маленькой антенной, используется в спутниковой связи с начала 90-х годов. Системы VSAT предоставляют услуги спутниковой связи клиентам (как правило, небольшим организациям), которым не требуется высокая пропускная способность канала. Скорость передачи данных для VSAT-терминала обычно не превышает 2048 кбит/с.
Рисунок 3.14 – Система VSAT
Потребителей российского рынка VSAT можно разделить на четыре сегмента:
1. Государственные учреждения 2. Крупные корпорации с разветвленной сетью филиалов и представительств. 3. Средний и малый региональный бизнес. 4. Частные пользователи.
Слова «очень маленькая апертура» относятся к размерам антенн терминалов по сравнению с размерами более старых антенн магистральных систем связи. VSAT-терминалы, работающие в C-диапазоне, обычно используют антенны диаметром 1,8-2,4 м, в Ku-диапазоне - 0,75-1,8 м. Антенна показана на рис. 3.9.
В системах VSAT применяется технология предоставления каналов по требованию.
Сеть спутниковой связи на базе VSAT включает в себя три основных элемента: центральная земная станция (при необходимости), спутник-ретранслятор и абонентские VSAT терминалы (рис.3.14).
Центральная земная станция в сети спутниковой связи выполняет функции центрального узла и обеспечивает управление работой всей сети, перераспределение ее ресурсов, выявление неисправностей, тарификацию услуг сети и сопряжение с наземными линиями связи. Обычно ЦЗС устанавливается в узле сети, на который приходится наибольший трафик. Это может быть, например, главный офис или вычислительный центр компании в корпоративных сетях, или же крупный город в региональной сети.
Типы управления . При централизованном управлении такой сетью центр управления сетью (ЦУС) выполняет служебные функции контроля и управления, необходимые для установления соединения между абонентами сети, но не участвует в передаче трафика. Обычно ЦУС устанавливается на одной из абонентских станций сети, на которую приходится наибольший трафик.
В децентрализованном варианте управления сетью ЦУС отсутствует, а элементы системы управления входят в состав каждой VSAT станции. Подобные сети с распределенной системой управления отличаются повышенной "живучестью" и гибкостью за счет усложнения оборудования, расширения его функциональных возможностей и удорожания VSAT терминалов. Эта схема управления целесообразна лишь при создании небольших сетей (до 30 терминалов) с высоким трафиком между абонентами.
Абонентская станция VSAT Абонентский VSAT терминал обычно включает в себя антенно-фидерное устройство, наружный внешний радиочастотный блок и внутренний блок (модем). Внешний блок представляет собой небольшой приемопередатчик или приемник. Внутренний блок обеспечивает сопряжение спутникового канала с терминальным оборудованием пользователя (компьютер, сервер ЛВС, телефон, факс УАТС и т.д.).
Спутники ретрансляторы сети VSAT строятся на базе геостационарных спутников-ретрансляторов. Это позволяет максимально упрощать конструкцию абонентских терминалов и снабжать их простыми фиксированными антеннами без системы слежения за спутником. Спутник принимает сигнал от земной станции, усиливает его и направляет назад на Землю. Важнейшими характеристиками спутника являются мощность бортовых передатчиков и количество радиочастотных каналов (стволов или транспондеров) на нем. Для обеспечения работы через малогабаритные абонентские станции типа VSAT требуются передатчики с выходной мощностью около 40 Вт. Современные VSAT работают как правило в Ku диапазоне частот 11/14 ГГц (одно значение частоты на прием, другое на передачу), также есть системы использующие С диапазон 4/6 ГГц, также сейчас осваивается Ка диапазон 18/30 ГГц.
Современные VSAT имеют один и более портов Ethernet и встроенные функции маршрутизатора. Некоторые модели, посредством расширения могут оснащаться 1-4 телефонными портами.
Спутниковый модем . DVB-карта - компьютерная плата расширения, предназначенная для приёма данных со спутника, своеобразный «спутниковый модем». Он может быть с интерфейсом PCI, PCI-E или USB, выбор зависит от того, что вам удобнее подключать к компьютеру
DVB-карта устанавливается в свободный PCI-слот или USB-порт компьютера и подключается коаксиальным кабелем к конвертеру спутниковой антенны, то есть выполняет функции классического спутникового ресивера и передаёт полученные данные другим узлам компьютера. В целом, процесс установки и настройки DVB-карты ничем не отличается от установки любого другого устройства.
Основные производители VSAT в мире :
Codan (Австралия);
Hughes Network System (США) - HughesNet (DirecWay), HX;
Gilat (Израиль) - SkyEdge;
ViaSat (США);
iDirect(США);
NDSatCom (Германия).
Типичная стоимость VSAT для конечного клиента около 2500..3000 долларов США.
Краткий список VSAT-сервисов:
Интернет через спутник
Дистанционное обучение
Сельская связь
Телемедицина
Служба чрезвычайных ситуаций
Закрытые группы пользователей государственных служб
Национальные и многонациональные сети
Широкополосная передача данных
Широковещательные службы
Службы правительственных и корпоративных организаций
Службы расширения инфраструктуры ТфОП
Коллективный доступ в Интернет
Рисунок 3.15 - DVB-карта (PCI) TT-budget S-1401
Системы подвижной спутниковой связи. Владельцы мобильных телефонов при всех их возможностях могут звонить лишь там, где оборудованы станции мобильной связи. А что делать там, где таких станций нет? Выход только один – использовать телефоны спутниковой связи , дающие возможность звонить практически из любой точки мира. Как понятно из названия связи, соединение происходит не через наземные станции, а через спутники, находящиеся на околоземной орбите.
Спу́тниковый телефо́н - мобильный телефон, передающий информацию напрямую через специальный коммуникационный спутник. В зависимости от оператора связи, областью охвата может быть или вся Земля, или только отдельные регионы. Связано это с тем, что используются либо низколетящие спутники, которые при достаточном количестве покрывают зоной охвата всю Землю, либо спутники на геостационарной орбите, где они не двигаются относительно Земли и не «видят» её полностью.
По размеру спутниковый телефон сравним с обычным мобильным телефоном, выпущенным в 1980х-1990х годах, но обычно имеет дополнительную антенну. Существуют также спутниковые телефоны в стационарном исполнении. Такие телефоны используются для связи в зонах, где отсутствует сотовая связь.
Номера спутниковых телефонов обычно имеют специальный код страны. Так, в системе Inmarsat используются коды с +870 по +874, в Iridium +8816 и +8817. На сегодняшний день спутниковая связь представлена в мире различными системами со своими достоинствами и недостатками. Что же касается России, то пока на ее территории доступными являются системы Инмарсат, Турайя, Глобалстар и Иридиум.
Инмарсат (Inmarsat) - первый и пока единственный оператор мобильной спутниковой связи, предлагающий все услуги современной спутниковой связи на водных пространствах, на земле и в воздухе.
Рисунок 3.16- Телефон системы Inmarsat
Турайя (Thuraya) - мобильная спутниковая связь, покрывающая одну треть земного шара и предлагающая недорогие звонки своим абонентам с ценой от $0,25 за минуту исходящего звонка и бесплатные входящие (по спутнику).
Рисунок 3.17 - Спутниковые телефоны Thuraya
Спутниковые телефоны Турайя совмещены с сотовыми, в которых есть приемник GPS, определяющий местонахождение с точностью до 100 метров. Связь доступна на 1/3 территории России.
Глобалстар (Globalstar) – это спутниковая связь нового поколения.
Рисунок 3.18 - Спутниковые телефоны Globalstar
Глобалстар предоставляет телефонную связь в тех районах Зземли, где раньше ее не было вообще или были серьезные ограничения в ее использовании и дает возможность звонить или обмениваться данными в практически любом районе планеты.
Иридиум (Iridium) – предоставляет беспроводную спутниковую сеть, обеспечивающую телефоннию везде и всегда. Связь от Иридиума покрывает всю поверхность Земли. В России сеть Иридиум доступна на всей территории, однако пока на обладает лицензией предоставлять услуги на территории РФ.
Особенностью большинства систем подвижной спутниковой связи является маленький размер антенны терминала, что затрудняет прием сигнала.
Для того чтобы мощность сигнала, достигающего приемника, была достаточной, применяют одно из двух решений. Спутники располагаются на геостационарной орбите.
Рисунок 3.19 - Спутниковые телефоны Iridium
Поскольку эта орбита удалена от Земли на расстояние 35786 км, на спутник требуется установить мощный передатчик. Этот подход используется системой Inmarsat (основной задачей которой является предоставление услуг связи морским судам) и некоторыми региональными операторами персональной спутниковой связи (например, Thuraya).
Множество спутников располагается на наклонных или полярных орбитах. При этом требуемая мощность передатчика не так высока, и стоимость вывода спутника на орбиту ниже. Однако такой подход требует не только большого числа спутников, но и разветвленной сети наземных коммутаторов. Подобный метод используется операторами Iridium и Globalstar.
С операторами персональной спутниковой связи конкурируют операторы сотовой связи. Характерно, что как Globalstar, так и Iridium испытывали серьёзные финансовые затруднения, которые довели Iridium до реорганизационного банкротства в 1999 г.
В декабре 2006 года был запущен экспериментальный геостационарный спутник Кику-8 с рекордно большой площадью антенны, который предполагается использовать для отработки технологии работы спутниковой связи с мобильными устройствами, не превышающими по размерам сотовые телефоны.
Рисунок 3.20 – Схема мобильной связи
Принципы организации подвижной спутниковой связи. Для того чтобы мощность сигнала, достигающего мобильного спутникового приемника, была достаточной, применяют одно из двух решений:
1. Спутники располагаются на геостационарной орбите. Поскольку эта орбита удалена от Земли на расстояние 35786 км, на спутник требуется установить мощный передатчик.
2. Множество спутников располагается на наклонных или полярных орбитах. При этом требуемая мощность передатчика не так высока, и стоимость вывода спутника на орбиту ниже. Однако такой подход требует не только большого числа спутников, но и разветвленной сети наземных коммутаторов.
Оборудование клиента (мобильные спутниковые терминалы, спутниковые телефоны) взаимодействует с внешним миром или друг с другом посредством спутника-ретранслятора и станций сопряжения оператора услуг мобильной спутниковой связи, обеспечивающих подключение к внешним наземным каналам связи (телефонной сети общего пользования, сети интернет и пр.)
Спутниковый Интернет. Спутниковая связь находит применение в организации «последней мили» (канала связи между интернет-провайдером и клиентом), особенно в местах со слабо развитой инфраструктурой.
Особенностями такого вида доступа являются:
Разделение входящего и исходящего трафика и привлечение дополнительных технологий для их совмещения. Поэтому такие соединения называют асимметричными.
Одновременное использование входящего спутникового канала несколькими (например 200-ми) пользователями: через спутник одновременно передаются данные для всех клиентов «вперемешку», фильтрацией ненужных данных занимается клиентский терминал (по этой причине возможна «Рыбалка со спутника»).
По типу исходящего канала различают:
Терминалы, работающие только на прием сигнала (наиболее дешевый вариант подключения). В этом случае для исходящего трафика необходимо иметь другое подключение к Интернету, поставщика которого называют наземным провайдером. Для работы в такой схеме привлекается туннелирующее программное обеспечение, обычно входящее в поставку терминала. Несмотря на сложность (в том числе сложность в настройке), такая технология привлекательна большой скоростью по сравнению с dial-up за сравнительно небольшую цену.
Приемо-передающие терминалы. Исходящий канал организуется узким (по сравнению с входящим). Оба направления обеспечивает одно и то же устройство, и поэтому такая система значительно проще в настройке (особенно если терминал внешний и подключается к компьютеру через интерфейс Ethernet). Такая схема требует установки на антенну более сложного (приемо-передающего) конвертера.
И в том, и в другом случае данные от провайдера к клиенту передаются, как правило, в соответствии со стандартом цифрового вещания DVB, что позволяет использовать одно и то же оборудование как для доступа в сеть, так и для приема спутникового телевидения.
Недостатки спутниковой связи:
1. Слабая помехозащищённость. Огромные расстояния между земными станциями и спутником являются причиной того, что отношение сигнал/шум на приемнике очень невелико (гораздо меньше, чем для большинства радиорелейных линий связи). Для того, чтобы в этих условиях обеспечить приемлемую вероятность ошибки, приходится использовать большие антенны, малошумящие элементы и сложные помехоустойчивые коды. Особенно остро эта проблема стоит в системах подвижной связи, так как в них есть ограничение на размер антенны и, как правило, на мощность передатчика.
2. Влияние атмосферы. На качество спутниковой связи оказывают сильное влияние эффекты в тропосфере и ионосфере.
3. Поглощение в тропосфере.Поглощение сигнала атмосферой находится в зависимости от его частоты. Максимумы поглощения приходятся на 22,3 ГГц (резонанс водяных паров) и 60 ГГц (резонанс кислорода). В целом, поглощение существенно сказывается на распространении сигналов с частотой выше 10 ГГц (то есть, начиная с Ku-диапазона). Кроме поглощения, при распространении радиоволн в атмосфере присутствует эффект замирания, причиной которому является разница в коэффициентах преломления различных слоев атмосферы.
4. Ионосферные эффекты. Эффекты в ионосфере обусловлены флуктуациями распределения свободных электронов. К ионосферным эффектам, влияющим на распространение радиоволн, относят мерцание, поглощение, задержку распространения, дисперсию, изменение частоты, вращение плоскости поляризации. Все эти эффекты ослабляются с увеличением частоты. Для сигналов с частотами, большими 10 ГГц, их влияние невелико. Сигналы с относительно низкой частотой (L-диапазон и частично C-диапазон) страдают от ионосферного мерцания, возникающего из-за неоднородностей в ионосфере. Результатом этого мерцания является постоянно меняющаяся мощность сигнала.
5. Задержка распространения сигнала. Проблема задержки распространения сигнала так или иначе затрагивает все спутниковые системы связи. Наибольшей задержкой обладают системы, использующие спутниковый ретранслятор на геостационарной орбите. В этом случае задержка, обусловленная конечностью скорости распространения радиоволн, составляет примерно 250 мс, а с учетом мультиплексирования, коммутации и задержек обработки сигнала общая задержка может составлять до 400 мс. Задержка распространения наиболее нежелательна в приложениях реального времени, например, в телефонной связи. При этом, если время распространения сигнала по спутниковому каналу связи составляет 250 мс, разница во времени между репликами абонентов не может быть меньше 500 мс. В некоторых системах (например, в системах VSAT, использующих топологию «звезда») сигнал дважды передается через спутниковый канал связи (от терминала к центральному узлу, и от центрального узла к другому терминалу). В этом случае общая задержка удваивается.
6. Влияние солнечной интерференции. При приближении Солнца к оси спутника - наземная станция радиосигнал, принимаемый со спутника наземной станцией, искажается в результате интерференции.
Хотя коммерческое использование геосинхронных спутников связи началось почти 25 лет назад, их широкое применение в сетях связи стало возможным лишь в начале 1980-х годов. Телевидение, телефония, широкополосная передача данных продолжают доминировать в списке услуг ССС. Современные системы спутниковой связи предоставляют беспрецедентные возможности для развития частных сетей, организации служб связи типа "точка-точка" и "точка-множество точек".
Спутниковая связь
Спутник - устройство связи, которое принимает сигналы от земной станции (ЗС), усиливает и транслирует в широковещательном режиме одновременно на все ЗС, находящиеся в зоне видимости спутника. Спутник не инициирует и не терминирует никакой пользовательской информации за исключением сигналов контроля и коррекции возникающих технических проблем и сигналов его позиционирования. Спутниковая передача начинается в некоторой ЗС, проходит через спутник, и заканчивается в одной или большем количестве ЗС.ССС состоит из трех базисных частей: космического сегмента, сигнальной части и наземного сегмента (рис. 1). Космический сегмент охватывает вопросы проектирования спутника, расчета орбиты и запуска спутника. Сигнальная часть включает вопросы используемого спектра частоты, влияния расстояния на организацию и поддержание связи, источники интерференции сигнала, схем модуляции и протоколов передачи. Наземный сегмент включает размещение и конструкцию ЗС, типы антенн, используемых для различных приложений, схемы мультиплексирования, обеспечивающие эффективный доступ к каналам спутника. Космический сегмент, сигнальная часть и наземный сегмент обсуждаются в следующих разделах.
Рисунок 1.
Система Iridium.
Преимущества и ограничения ССС
ССС имеют уникальные особенности, отличающие их от других систем связи. Некоторые особенности обеспечивают преимущества, делающие спутниковую связь привлекательной для ряда приложений. Другие создают ограничения, которые неприемлемы при реализации некоторых прикладных задач.ССС имеет ряд преимуществ:
Выделим также ряд ограничений в использовании ССС:
Влияние упомянутых преимуществ и ограничений на выбор спутниковых систем для частных сетей довольно значительно. Решение об использовании ССС, а не распределенных наземных сетей, всякий раз необходимо экономически обосновать. Все более возрастающую конкуренцию ССС составляют оптоволоконные сети связи.
Космический сегмент
Современные спутники связи, используемые в коммерческих ССС, занимают геосинхронные орбиты, в которых период орбиты равен периоду отметки на поверхности Земли. Это становится возможным при размещении спутника над заданным местом Земли на расстоянии 35800 км в плоскости экватора.Большая высота, требуемая для поддержания геосинхронной орбиты спутника, объясняет нечувствительность спутниковых сетей к расстоянию. Длина пути от заданной точки на Земле через спутник на такой орбите до другой точки Земли в четыре раза больше расстояния по поверхности Земли между двумя ее максимально удаленными точками.
В настоящее время наиболее плотно занятая орбитальная дуга равна 76 о (приблизительно; 67 о по 143 о западной долготы). Спутники этого сектора обеспечивают связь стран Северной, Центральной и Южной Америки.
Главными компонентами спутника являются его конструкционные элементы; системы управления положением, питания; телеметрии, трекинга, команд; приемопередатчики и антенна.
Структура спутника обеспечивает функционирование всех его компонентов. Предоставленный сам себе спутник в конечном счете перешел бы к случайным вращениям, превратившись в бесполезное для обеспечения связи устройство. Устойчивость и нужная ориентация антенны поддерживается системой стабилизации. Размер и вес спутника ограничены в основном возможностями транспортных средств, требованиями к солнечным батареям и объему топлива для жизнеобеспечения спутника (обычно в течение десяти лет).
Телеметрическое оборудование спутника используется для передачи на Землю информации о его положении. В случае необходимости коррекции положения, на спутник передаются соответствующие команды, по получении которых включается энергетическое оборудование и коррекция осуществляется.
Сигнальная часть
Ширина полосы
Ширина полосы (bandwidth) спутникового канала характеризует количество информации, которую он может передавать в единицу времени. Типичный спутниковый приемопередатчик имеет ширину полосы 36 МГц на частотах от 4 МГц до 6 МГц.Обычно ширина полосы спутникового канала велика. Например, один цветной телевизионный канал занимает полосу 6 МГц. Каждый приемопередатчик на современных спутниках связи поддерживает полосу в 36 МГц, при этом спутник несет 12 или 24 приемопередатчиков, что дает в результате 432 МГц или 864 МГц, соответственно.
Спектр частот
Спутники связи должны преобразовывать частоту получаемых от ЗС сигналов перед ретрансляцией их к ЗС, поэтому спектр частот спутника связи выражен в парах. Из двух частот в каждой паре, нижняя используется для передачи от спутника к ЗС (нисходящие потоки), верхняя - для передачи от ЗС на спутник (восходящие потоки). Каждая пара частот называется полосой.Современные спутниковые каналы чаще всего применяют одну из двух полос:
C-полосу (от спутника к ЗС в области 6 ГГц и обратно в области 4 ГГц),
или Ku-полосу (14 ГГц и 12 ГГц, соответственно). Каждая полоса частот имеет
свои характеристики, ориентированные на разные задачи связи (таблица 1).
Таблица 1.
Большинство действующих спутников используют C-полосу. Передача в С-полосе может покрывать значительную область земной поверхности, что делает спутники особенно пригодными для сигналов широковещания. С другой стороны, сигналы С-полосы, являются относительно слабыми и требуют развитых и достаточно дорогих антенн на ЗС. Важная особенность сигналов С-полосы - их устойчивость к атмосферному шуму. Атмосфера земли почти прозрачна для сигналов в диапазоне 4/6 ГГц. К сожалению, этим же фактором обусловлено то, что сигналы С-полосы более всего подходят для наземных двухточечных микроволновых передач, портящих более слабые спутниковые сигналы. Данное обстоятельство заставляет размещать ЗС, использующие при передаче С-полосу, за много километров от городских центров и мест плотного проживания населения.
Передача в Ku-полосе имеет противоположные свойства. Луч при такой передаче сильный, узкий, что делает передачу идеальной для двухточечных соединений или соединений от точки к нескольким точкам. Наземные микроволновые сигналы никоим образом не влияют на сигналы Ku-полосы, и ЗС Ku-полосы могут быть размещены в центрах городов. Естественная большая мощность сигналов Ku-полосы позволяет обойтись меньшими, более дешевыми антеннами ЗС. К сожалению, сигналы Ku-полосы чрезвычайно чувствительны к атмосферным явлениям, особенно туману и сильному дождю. Хотя подобные погодные явления, как известно, воздействуют на небольшую область в течение краткого времени, результаты могут быть достаточно серьезны, если такие условия совпадают с ЧНН (час наибольшей нагрузки, например 4 часа пополудни, полдень пятницы).
Передача речи и данных
Мультиплексирование с разделением частот (FDM) широко используется для мультиплексирования нескольких речевых каналов или каналов данных на один спутниковый приемопередатчик.В FDM волновая форма каждого индивидуального телефонного сигнала фильтруется для ограничения ширины полосы диапазоном звуковых частот между 300 и 3400 Гц, затем преобразуется. Далее сигналы двенадцати каналов мультиплексируются в составной сигнал основной полосы. Каждая группа составлена из телефонных сигналов, размещенных в интервалах с шириной полосы равной 4 кГц. Затем несколько групп повторно мультиплексируются и формируют большую группу, которая может содержать от 12 до 3600 отдельных речевых каналов.
Мультиплексирование с временным разделением (TDM) - другой метод для передачи речи и/или данных по одному каналу. Если в FDM для передачи речевого сигнала (или данных) назначаются отдельные сегменты частоты внутри всей полосы, в методе TDM передача ведется по всей выделенной полосе частот. В исходящем канале повторяемые базовые временные периоды, называемые иногда фреймами (frame), разделены на фиксированное число тактов, которые выделяются последовательно для передачи сигналов входящих речевых каналов и каналов данных. Для предохранения от возможных потерь информации используются накопители (буферы).
Система Aloha
Влияние разработанного в Гавайском университете в начале 1970-х протокола множественного доступа Aloha (известного также под названием система Aloha) на развитие спутниковых и локальных сетей связи трудно переоценить.В данной системе ЗС используют пакетную передачу по общему спутниковому каналу. В любой момент времени каждая ЗС может передавать лишь один пакет. Поскольку спутнику по отношению к пакетам отведена роль ретранслятора, всегда, когда пакет одной ЗС достигает спутника во время трансляции им пакета некоторой другой ЗС, обе передачи накладываются (интерферируют) и "разрушают" друг друга. Возникает требующая разрешения конфликтная ситуация.
В соответствии с ранним вариантом системы Aloha, известной под названием "чистая система Aloha", ЗС могут начать передачу в любой момент времени. Если спустя время распространения они прослушивают свою успешную передачу, то заключают, что избежали конфликтной ситуации (т.е. тем самым получают положительную квитанцию). В противном случае они знают, что произошло наложение (или, быть может, действовал какой-либо другой источник шума) и они должны повторить передачу (т.е. получают отрицательную квитанцию). Если ЗС сразу же после прослушивания повторят свои передачи, то наверняка опять попадут в конфликтную ситуацию. Требуется некоторая процедура разрешения конфликта для того, чтобы ввести случайные задержки при повторной передаче, и разнести во времени вступающие в конфликт пакеты.
Другой вариант системы Aloha состоит в разбиении времени на отрезки - окна, длина которых равна длине одного пакета при передаче (предполагается, что все пакеты имеют одну и ту же длину). Если теперь потребовать, чтобы передача пакетов начиналась только в начале окна (время привязано к спутнику), то получится двойной выигрыш в эффективности использования спутникового канала, т.к. наложения при этом ограничиваются длиной одного окна (вместо двух, как в чистой системе Aloha). Эта система называется синхронной системой Aloha (рис. 2).
Рисунок 2.
Период уязвимости для системы Aloha.
Третий подход базируется на резервировании временных окон по требованию ЗС.
Читатели, знакомые с протоколами множественного доступа в локальных сетях, поймут, что описанная система Aloha является предшественником используемого в сетях Ethernet протокола множественного доступа с проверкой несущей и обнаружением конфликтов (CSMA-CD - Carrier Sense Multiple Access with Collision Detection). Особенность протокола CDMA-CD заключается в возможности быстрого определения конфликтов (в течение микро- и даже наносекунды) и мгновенного прекращения передачи. На спутниковых каналах из-за большого времени распространения оперативное прекращение передачи заведомо испорченных пакетов, к сожалению, невозможно.
Другим усовершенствованием системы Aloha может служить назначение приоритетов для ЗС с большой интенсивностью нагрузки.
Наземный сегмент
Технологическое развитие привело к значительному уменьшению размеров ЗС. На начальном этапе спутник не превышал нескольких сотен килограммов, а ЗС представляли собой гигантские сооружения с антеннами более 30 м в диаметре. Современные спутники весят несколько тонн, а антенны, зачастую не превышающие 1 м в диаметре, могут быть установлены в самых разнообразных местах. Тенденция уменьшения размеров ЗС вместе с упрощением установки оборудования приводит к снижению его стоимости. На сегодняшний день стоимость ЗС является, пожалуй, главной характеристикой, определяющей широкое распространение ССС. Преимущество спутниковой связи основано на обслуживании географически удаленных пользователей без дополнительных расходов на промежуточное хранение и коммутацию. Любые факторы, понижающие стоимость установки новой ЗС, однозначно содействуют развитию приложений, ориентированных на использование ССС. Относительно высокие издержки развертывания ЗС позволяют наземным волоконно-оптическим сетям в ряде случаев успешно конкурировать с ССС.Следовательно, главное преимущество спутниковых систем состоит в возможности создавать сети связи, предоставляющие новые услуги связи или расширяющие прежние, при этом с экономической точки зрения преимущество ССС обратно пропорционально стоимости ЗС.
В зависимости от типа, ЗС имеет возможности передачи и/или приема. Как уже отмечалось, фактически все интеллектуальные функции в спутниковых сетях осуществляются в ЗС. Среди них - организация доступа к спутнику и наземным сетям, мультиплексирование, модуляция, обработка сигнала и преобразование частот. Отметим, наконец, что большинство проблем в спутниковой передаче решается оборудованием ЗС.
В настоящее время выделяются четыре типа ЗС. Наиболее сложными и дорогостоящими являются ориентированные на большую интенсивность пользовательской нагрузки ЗС с очень высокой пропускной способностью. Станции такого типа предназначены для обслуживания пользовательских популяций, требующих для обеспечения нормального доступа к ЗС волоконно-оптических линий связи. Подобные ЗС стоят миллионы долларов.
Станции средней пропускной способности эффективны для обслуживания частных сетей корпораций. Размеры подобных сетей ЗС могут быть самыми разнообразными в зависимости от реализованных приложений (передача речи, видео, данных). Различаются два типа корпоративных ССС.
Развитая корпоративная ССС с большими капиталовложениями обычно поддерживает такие услуги, как видеоконференция, электронная почта, передача видео, речи и данных. Все ЗС такой сети имеют одинаково большую пропускную способность, а стоимость станции доходит до 1 миллиона долларов.
Менее дорогостоящим типом корпоративной сети является ССС большого числа (до нескольких тысяч) микротерминалов (VSAT - Very Small Aperture Terminal) связанных с одной главной ЗС (MES - Master Earth Station). Данные сети ограничиваются обычно приемом/передачей данных и приемом аудио-видеоуслуг в цифровом виде. Микротерминалы общаются между собой посредством транзита с обработкой через главную ЗС. Топология таких сетей является звездообразной.
Четвертый тип ЗС ограничен возможностями приема. Это самый дешевый вариант станции, поскольку ее оборудование оптимизируется под предоставление одной или нескольких конкретных услуг. Данная ЗС может быть ориентирована на прием данных, аудиосигнала, видео или их комбинаций. Топология также звездообразная.
Международные консорциумы в ССС
Intelsat
Консорциум Intelsat (The International Telecommunications Satellite Organization) - старейший и наиболее крупный - образован в 1965 году с целью предоставления государствам-участникам консорциума (в основном - развивающимся странам) современных технологий связи. Intelsat - это организация, включающая более 120 стран полных участников и около 60 стран - ассоциированных участников.Первый коммерческий спутник Early Bird был выведен Intelsat на орбиту в апреле 1965 году. К июню того же года спутник официально начал передачу по 240 телефонным каналам, что эквивалентно одному телевизионному каналу по ширине полосы. Intelsat быстро вырос до крупнейшей ССС с 18 спутниками, располагающимися над Атлантикой, Индийским и Тихим океанами. В настоящее время базовыми спутниками Intelsat являются мощнейшие Intelsat VIII и Intelsat-К, значительно превосходящие по своим характеристикам первый Early Bird. Так в сравнении даже с Intelsat VI, оборудованным 48 приемопередатчиками, Intelsat VIII имеет 36 С-полос и 10 Ku-полос и поддерживает сотни тысяч телефонных каналов. Цена спутника на один канал с 100 тыс. долл. снизилась до нескольких тысяч, а цена минуты использования канала абонентом, составлявшая ранее 10 долл. понизилась до 1 доллара. Мощность солнечных батарей Intelsat VIII составляет 4 КВт, т.е. возросла по сравнению с Intelsat VI на 54% и, соответственно, в 4 раза по сравнению с Intelsat V.
Eutelsat
Консорциум Eutelsat (The European Telecommunications Satellite Organization) был образован 1977 году для передачи телефонных вызовов и европейских телевизионных программ на континенте. В 1994 году участниками Eutelsat были 36 государств Европы, в настоящее время страны восточной Европы становятся полноправными участниками консорциума.Современная технологическая программа Eutelsat базируется на мощных спутниках Eutelsat II, а в дальнейшем, начиная с 1998 году будет переориентирована на спутники третьего поколения Eutelsat III, предоставляющие расширенные операционные возможности и предназначенные для использования в первом десятилетии следующего века.
Inmarsat
Консорциум Inmarsat (The International Marine Satellite Organization) образован в 1979 году по просьбе Международной морской организации (IMO) со штаб-квартирой в Лондоне с целью организации спутниковой связи для подвижных объектов (морских судов и авиационной техники). Организация включает 64 государства, содержит 20 крупных, размещенных по всему миру фиксированных ЗС и позволяет одновременно обслуживать до 10 тыс. подвижных объектов.Тенденции технологии
Последние достижения технологии в области спутниковой связи говорят о больших потенциальных возможностях ССС в расширении пропускной способности каналов передачи, разработке и внедрении новых служб связи. Будущее ССС за широкополосными широковещательными приложениями и спутниковыми системами подвижной связи.В ряды крупных консорциумов и организаций, ориентированных на геосинхронные спутники, активно вливаются новые участники, предлагающие услуги сетей подвижных связи и использующие низкоорбитальные спутниковые системы (LEO - Low Earth Orbit). Системы LEO, разрабатываемые рядом американских фирм, используют большое число легких спутников на орбитах ниже 2 тыс. км для организации услуг по передаче сообщений и речи, определению местонахождения и срочных коммуникаций между мобильными терминалами. В отличие от наземных сотовых сетей подвижной связи, в которых абонент последовательно перемещается через смежные соты небольшого размера, в системе LEO подобная "сота" ограничена лишь горизонтом земли. Низкая орбита спутников резко сокращает задержку по сравнению с системами, ориентированными на геосинхронные орбиты спутников.
Одним из наиболее амбициозных проектов системы LEO является система Iridium, разрабатываемых компанией Motorola, которая включает 66 спутников, позволяющих обеспечить двухстороннюю радиотелефонную речевую связь. В принципе, нет никаких технических препятствий для полного развертывания системы Iridium, однако глобальный характер и возможность функционирования вне национальных телефонных сетей предполагают предварительное изучение и установление необходимых регулирующих барьеров. Крупные инвестиции в проект Iridium сделаны рядом компаний, среди которых Motorola, Nippon Iridium, Lockheed/Raytheon, Sprint и China Great Wall Industry.
В ряду других крупных проектов систем LEO отметим Globalstar, Odyssey, Ellipso и Aries.
В заключение отметим, что ССС постоянно и ревниво сравниваются с волоконно-оптическими сетями связи. Внедрение этих сетей ускоряется в связи с быстрым технологическим развитием соответствующих областей волоконной оптики, что заставляет задаться вопросом о судьбе ССС. Посоветуем любителям спутниковой связи оставаться оптимистами: эволюционно/революционным преобразованиям подвержены, как следовало ожидать, и ССС. Например, разработка и, главное, внедрение конкатенирующего (составного) кодирования резко уменьшают вероятность возникновения неисправленной побитовой ошибки, что, в свою очередь, позволяет преодолеть главную проблему ССС - туман и дождь. Бррр! Ефимушкин В.А. - к.ф.-м.н., зав. лабораторией телекоммуникаций ВЦ Российского Университета дружбы народов. Его адрес электронной почты:
Спутниковая связь – это один из видов космической радиосвязи, основанный на использовании в качестве ретрансляторов искусственных спутников Земли, как правило, специализированных спутников связи.
Спутниковая связь. Космическая спутниковая связь. Технология спутниковой связи:
Спутниковая связь знаменует собой новый этап развития передовых технологий, который неразрывно связан с освоением космического пространства.
Определение спутниковой связи достаточно убедительно звучит в следующей формулировке: спутниковую связь необходимо приравнять к разновидности космической радиосвязи, которая основана на использовании специальных ретрансляторов – искусственных спутников связи .
Спутниковая связь – это один из видов космической радиосвязи, основанный на использовании в качестве ретрансляторов искусственных спутников Земли , как правило, специализированных спутников связи .
Радиосигнал ретранслируется небольшими космическими аппаратами, которые движутся вокруг Земли по определенной траектории.
Аппарат, выведенный на орбиту в интересах обеспечения ретрансляции и обработки радиосигнала, получил название искусственного спутника связи (сокращенно ИСС). На борту искусственного спутника связи монтируется сложная ретрансляционная аппаратура: блоки приема/передачи сигнала, а также узконаправленные антенны , работающие на определенных частотах. Работа искусственного спутника связи состоит в приеме сигнала, его усилении, частотной обработки и ретрансляции в направлении земных станций, пребывающих в зоне видимости аппарата. Спутник-ретранслятор – автономное устройство, способное обеспечивать свое местопребывание в заданной точке пространства и потребляющее электроэнергию от бортовых источников питания. Система стабилизации обеспечивает заданную ориентацию антенны спутниковой связи . Передачу на Землю данных о положении космического аппарата, прием управляющих команд обеспечивает телеметрическое оборудование.
Ретрансляция полученного радиосигнала может реализовываться с запоминанием и без запоминания, что обусловлено непостоянным пребыванием спутника в зоне видимости земных станций .
На сегодняшний день системы спутниковой связи являются неотъемлемой частью телекоммуникационных магистралей мира, связавших континенты и страны.
Принцип спутниковой связи. Система, оборудование, средства и станции спутниковой связи:
Принцип спутниковой космической связи предполагает передачу/прием радиосигнала с использованием базовых наземных или подвижных станций через спутниковый ретранслятор. Данная специфика обеспечения прохождения радиоволн обусловлена кривизной земной поверхности, препятствующей прохождению радиосигнала. Иными словами, в зоне прямой видимости радиосигнал с одной станции на другую транслируется без задержек. Однако, если стоит задача получить сигнал за многие тысячи километров от передающей станции, то требуется ретранслятор, направляющий сигнал под соответствующим углом на приемную станцию.
По своей сути, спутниковая связь через устройство-ретранслятор является типовой аналогией радиорелейной связи, только в этом случае, ретранслятор располагается на значительном расстоянии (высоте) от земной поверхности, исчисляемой тысячами километров. Если для организации радиосвязи на большие расстояния в разные места земного шара требовалось множество наземных ретрансляторов, то с появлением космических спутников их количество сократилось в разы. Теперь для трансляции радиосигнала с одной материковой части на другую требуется всего один спутник .
Спутниковая связь , в целом, обеспечивается целым комплексом взаимосвязанных элементов системы связи: спутниками-ретрансляторами ; стационарными земными станциями спутниковой связи на земной поверхности; центром управления спутниковой связи (ЦУСС) и др. элементами системы.
Для эффективной передачи радиосигнала на большие расстояния аналоговый сигнал не подходит вследствие большой шумовой нагрузки, поэтому его предварительно оцифровывают (т.н. цифровая спутниковая связь ), а затем передают на спутник. Для исправления ошибок используют схемы помехоустойчивого кодирования.
На сегодняшний день прием/передачу TV-сигнала и радиовещания на территории РФ обеспечивают спутниковые системы связи (ССС). Спутниковая связь , является ключевым элементом взаимоувязанной сети связи РФ. В состав спутниковой системы связи вошли два базовых компонента – наземный и космический.
Развитие спутниковой связи. История развития в СССР:
Первый искусственный спутник Земли был выведен на орбиту в 1957 году. Вес космического аппарата составлял всего лишь 83,6 кг. Управление спутником осуществлялось через миниатюрный блок – радиопередатчик-маяк. Успешные результаты приема/передачи радиосигнала в открытом космосе позволили реализовать дальновидные планы, предусматривающие использование ИСС в качестве активного и пассивного ретранслятора радиосигнала. Однако, чтобы реализовать столь перспективные планы, необходимо было создать такие космические аппараты, которые могли нести достаточный вес (разнообразную приемо-передающую аппаратуру). Кроме того, чтобы вывести на орбиту искусственный спутник, нужны были мощные ракетные двигатели и оборудование. После того, как российскими инженерами были решены эти проблемы, появилась возможность запускать в открытый космос ИСС для проведения научных и исследовательских работ, решения навигационных, метеорологических, разведывательных задач, а также для обеспечения стойкого канала связи для передачи радиосигналов на большие расстояния. Процесс формирования спутниковой системы связи (ССС) активизировался после запуска первого искусственного спутника. В рамках реализации данной концепции на земной поверхности начали строить базовые приемо-передающие станции, оснащенные параболическими антеннами. Диаметр антенны достигал 12 метров, что позволило обеспечить стойкий прием и передачу радиосигнала. В 1965 году российскими инженерами удалось обеспечить получение телевизионных программ во Владивостоке, транслируемых из Москвы через ССС.
В 1967 году после тестирования и доведения технической мощности до требуемых параметров была введена в строй система спутниковой связи «Орбита». В 1975 году на круговую орбиту был выведен космический спутник «Радуга». Расстояние от земной поверхности до искусственного летательного аппарата составило почти 36 км. Направление вращения планеты и спутника практически совпадало, поэтому ИСС буквально «парил» над Землей, оставаясь неподвижным на протяжении суток. Данное техническое решение упрощало передачу управляющих команд на космический аппарат и гарантировало функционирование стабильного канала приема/передачи радиоволн. В последующем на орбиту был выведен более совершенный ИСС «Горизонт».
Результаты эксплуатации ИСС «Орбита» показали неэффективность обслуживания радиосигнала в интересах трансляции телепрограмм в небольших населенных пунктах, насчитывающих несколько десятков тысяч человек местных жителей. Поэтому, приоритет был предоставлен компактным наземным станциям приема-передачи сигнала, обслуживаемым ССС «Экран». Искусственный спутник данной системы спутниковой связи был выведен на околоземную орбиту в 1976 году. Теперь программы центрального телевидения могли смотреть люди даже в отдаленных местах Сибири и Дальнего Востока.
В 80-х годах прошлого века через ИСС «Горизонт» активно эксплуатировалась система спутниковой связи «Москва».
Использование спутниковой связи. Особенности эксплуатации спутников связи:
В начальный период освоения околоземного пространства в интересах ретрансляции радиосигнала в космос запускались простейшие спутники, содержащие минимум аппаратуры на борту (космические спутники «ЭХО» и «ЭХО-2»). В качестве ретранслятора использовалась металлическая сфера корпуса, обладающая отражающим действием. Нередко в качестве отражателя использовалась полимерная сфера с металлическим напылением . Коэффициент полезного действия подобных устройств был чрезвычайно низким, поэтому пассивные искусственные спутники должного развития не получили. Их полной противоположностью стали активные искусственные спутники, имеющие внутри сложную электронную начинку, предназначенную для приема, обработки, усиления и передачи радиосигнала в любую точку земного шара.
По способу обработки радиосигнала космические спутники классифицируются на два типа: регенеративные и нерегенеративные ИСС.
Регенеративные спутники связи осуществляют более объемный набор операций – на стадии приема сигнала производит его демодуляцию, а в момент ретрансляции осуществляет его модуляцию. Такой способ обработки радиосигнала требует дополнительного оборудования и характеризуется достаточной сложностью. Регенеративные спутники отличаются высокой стоимостью.
Нерегенеративные спутники связи обеспечивают простейший набор операций с радиосигналом. В момент приема сигнала от земной станции – искусственный спутник связи обеспечивает его усиление и перенос на другую частоту. В последующем, радиосигнал ретранслируется на другую земную станцию. Спутник может одновременно принимать и передавать множество радиосигналов по разным каналам (транспондерам). Каждому каналу отводится выделенная часть спектра. Недостатком метода является заметная задержка ретранслируемого радиосигнала, обусловленная двойным регламентом исправлением ошибок.
Орбиты спутниковой связи. Орбиты космических спутников связи:
На данный момент существует следующая классификация орбит спутниковых ретрансляторов.
Экваториальная орбита спутниковой связи. Характерной особенностью экваториальной орбиты выступает геостационарный подход, заложенный в основу предложенной технологии . Сущность подхода заключается в том, что угловая скорость спутника-ретранслятора и Земли не только совпадают, но и осуществляются в одном направлении. Иными словами, направление движения спутника и вращения нашей планеты идентичны. Главный плюс экваториальной орбиты заключается в том, что земной приемник постоянно пребывает на связи со спутником. В этом случае спутник, будто находится на одном месте, поэтому радиоволны не встречают препятствий.
К недостаткам предложенного варианта обращения спутника связи относится следующее:
– поскольку на орбиту одновременно выводится сотни и тысячи разных спутников, возрастает риск столкновения их друг с другом, поэтому приходится тщательно рассчитывать и контролировать их траектории;
– большая высота (около 36 тыс. км) вывода спутников на орбиту приводит к существенным задержкам при передаче полезной информации (эффект запаздывания радиосигнала);
– значительная высота вывода спутников на орбиту требует существенных материальных затрат;
– невозможность обслуживания земных станций в приполярных областях.
Наклонная орбита спутниковой связи представляет собой более сложный вариант движения в космическом пространстве и взаимодействия спутника с земными станциями.
В рамках предложенной схемы земные станции оборудуются специальными приборами слежения, которые облегчают поиск космического ретранслятора на околоземной орбите и обеспечивают коррекцию угла поворота антенного зеркала. Важным плюсом данного подхода является опция постоянного сопровождения спутника. Иными словами, земная станция постоянно контролирует местоположение спутника и «ведет» его по небосклону. Новшество полностью оправдывает себя в предаварийных и форс-мажорных ситуациях, когда владельцы спутников по разным причинам не контролируют их местоположение.
Полярная орбита спутниковой связи отождествляется с частным случаем наклонной орбиты и предполагает наклон к плоскости экватора в 90°.
Диапазоны частот спутниковой связи. Виды спутниковой связи:
Земные станции передают радиосигнал на спутник в определенном диапазоне. Специфика данного процесса обусловлена тем, что диапазон частот на передачу радиосигнала с земной станции отличается от частотного спектра сигнала, ретранслируемого со спутника. Иными словами, для передачи радиосигнала используется один диапазон частот, а для ретрансляции – другой. Данная особенность поясняется тем, что слои атмосферы по-разному пропускают радиосигнал, активизируя процесс затухания и поглощения сигнала. Диапазоны частот спутниковой связи определяются “Регламентом радиосвязи”, при этом принимается во внимание специфика “окон прозрачности для радиоволн” атмосферы, уровень радиопомех и влияние др. факторов.
Диапазоны частот, используемые в спутниковой связи, обозначаются специальными буквами.
Для L-диапазона выделяется полоса частот 1, 5-1,6 ГГц, сфера применения подвижная спутниковая связь (ПСС).
Для S-диапазона выделяется полоса частот 1, 9-2,2 и 2,4-2,5 ГГц, сфера использования подвижная спутниковая связь (ПСС).
Для C-диапазона выделяется полоса частот 4-6 ГГц, сфера применения – (ФСС).
Для Ku-диапазона выделяется полоса частот 11, 12, 14 ГГц, сфера применения – фиксированная спутниковая связь (ФСС), спутниковое вещание .
Для K-диапазона выделяется полоса частот 20 ГГц, сфера применения – фиксированная спутниковая связь (ФСС), спутниковое вещание .
Для Ka-диапазона выделяется полоса частот 30 ГГц, сфера применения – фиксированная спутниковая связь (ФСС), подвижная спутниковая связь (ПСС), связь между спутниками .
Для ENF-диапазона выделяется полоса частот 40-50 ГГц, сфера применения – фиксированная спутниковая связь (ФСС), перспектива.
Более высокое качество приема радиосигнала обеспечивает C-диапазон, однако для этого требуется антенна с увеличенным диаметром тарелки.
Сколько каналов может организовать один спутник связи? Система спутниковой связи:
Типовой спутниковый приемопередатчик, работающий в диапазоне 4-6 ГГц, занимает полосу частот, шириной 36 МГц, что позволяет обеспечить ретрансляцию 6 TV-каналов или 3,6 тыс. телефонных каналов. На одном спутнике обычно устанавливают 12 или 24 приемопередатчика.
В перспективе современная система спутниковой связи будет включать несколько подсистем:
– фиксированную спутниковую связь (ФСС), предназначенную для обслуживания взаимоувязанной сети связи РФ;
– подсистему спутникового телевещания и радиовещания;
– подсистему подвижной спутниковой связи (ПСС), предназначенную для обслуживания потребностей удаленных и подвижных абонентов.
Для того, чтобы спутниковый ретранслятор могли эксплуатировать многие пользователи применяют технологию множественного доступа с частотным, кодовым или временным разделением.
Примечание: © Фото //www.pexels.com, //pixabay.com
спутниковые системы сети линии связи
станция операторы услуги использование расчет характеристика организация телефон спутниковой связи
работа спутник военная мобильная современная спутниковая связь тарифы иридиум в россии интернет официальный сайт купить глобалстар инмарсат гонец
спутниковый канал связи
Коэффициент востребованности 2 101