Какие характеристики важны для динамиков. Технические характеристики динамиков для автомобильных аудиосистем

Чтобы удобно и комфортно было передвигаться в авто, большинство автолюбителей устанавливают полноценную аудиосистему с сабвуферами и высокочастотными динамиками. Но, далеко не все ценителям музыки нравятся громкие басы и высокочастотные звуки. Многие предпочитают чистое, качественное звучание, но на несколько тонов ниже. Поэтому приобретают и устанавливают низкочастотные динамики для авто.

Динамики для сабвуфера

Низкая частота звука еще не означает его плохое качество. Существует огромный выбор колонок, издающих низкие музыкальные частоты. По своим характеристикам и качественным показателям подобные акустические системы ни чем не хуже высокочастотных аналогов.

Все акустики отличаются размерами и особенностями конструкций. И при выборе наиболее оптимального варианта стоит учитывать места установки системы и предпочтения слушателей. Самыми оптимальными фронтальными акустическими оснащениями считаются низкочастотные динамики 16 см. Этот вариант больше приближен к среднечастотному, но и такой звук может быть очень высокого качества с глубокими басами.


Немного большего размера низкочастотные динамики 20 см. подойдут для монтирования в трехкомпонентные акустические системы, как мидбасовое звено. Самые идеальные тыловые колонки в акустику размером 13 см. Конечно, здесь нельзя будет добиться глубокого баса. И совместить такие фронтальные динамики с сабвуфером будет не так просто. Сформировать качественную систему звука тоже вряд ли получится с динамиками 13 см. Так как они мелкие в диаметре.

Можно сделать вывод, что музыкальное воспроизведение в салоне зависит от параметров колонок. Если установить громкоговоритель большого диаметра, то даже низкие частоты он будет воспроизводить высококлассно.


Если нет желания затрачивать средства на сабвуфер, то рекомендуется приобретать фронтальные колонки 16-18 см. А низкочастотный динамик для сабвуфера можно выбрать 8, 13, 15 см.

Обзор динамиков разных размеров

Предлагаем ознакомится с некоторыми популярными моделями низкочастотной акустики.


Компонентные колонки

FOCAL PERFORMANCE PS 165

Эта система 16 см. размером. Французский производитель создал комплект одним из самых качественных для автомобилей. Оборудование воспроизводит чистый звук, обладает настраиваемыми кроссоверами. Это двухполосная акустика с мощностью в 80 Вт. (номинальная) и в 160 Вт. (максимальная). Динамики созданы из прочного алюминия. Характеризуются приятными басами, чистым, плотным звуком, лаконичным дизайном. Очень удобно и легко монтировать в любые штатные мета в салоне.


Пользователи усмотрели здесь некоторые недостатки:

  • Очень короткий шнур питания;
  • если басы завышены можно уловить шум (в редких случаях);
  • чтобы комфорт был максимальным при использовании подобных колонок, необходимо подсоединять усилитель.

Focal — дорогостоящий комплект акустики: 17500 рублей.

ALPINE SGP-10CS

Отличная аудиосистема. Без усилителя. В конструкции предусмотрены вентиляционные каналы, чтобы правильно распределять воздушные потоки. Двухполосная система 16 см. с ровным, качественным звуком. Внешний кроссовер входит в комплект. Твитер выполнен из качественного, прочного шелка. Частотность от 68. Но, при грамотной ее настройке, прекрасно проигрывает басы. Стоит комплект «Альпин» 6200 руб.


HERTZ ESK 165L.5

Такая установка рекомендуется для ценителей громких басов. Целлюлозный твитер имеет защитную пропитку, а купол обладает широким углом излучения. Вся акустика отличается высоким качеством материалов, из которых она создана. Прорезиненный тыл, корзина защищена от повреждений, коррозии. Частотность от 50. Внешний кроссовер входит в комплектацию. Прекрасный диапазон звучания.


Но есть и минусы в оборудовании:

  • При сильных морозах система нуждается в длительном прогревании;
  • корректировка звука осуществляется с помощью эквалайзера.

Средняя стоимость итальянских динамиков 8800 рублей.

KICX ALN 8.3

Трехполосная акустика размером 20 см. Особенность системы являются диффузоры из алюминия. Они немного жестковаты для звучания. Алюминий хорошо переносит нагрузку и меняющуюся частоту звука. В то же время, устойчив к разности температур и влажности. Частотность от 40 Гц. Колонки укомплектованы кроссовером. Низкие частоты воспроизводят отлично. Чистый звук при любом жанре музыки. Цена оборудования в пределах 7700 рублей.


  1. Важно определиться с размерами колонок. От этого будет зависеть не только качество музыкального воспроизведения, но и внешний вид салона. Если установить огромные колонки в малогабаритку, они будут мешать и водителю и пассажирам. Забирать много места и отвлекать внимание. Поэтому, следует приобретать акустику соразмерную модели машины. Самые подходящие диаметры для малогабариток — 4 см, 8 см, 15 см. Хотя, многие любят, чтобы динамики не были видны и в больших салонах. Осмотрите штатные отверстия. Они должны без проблем вмещать в себя оборудования.
  2. Мощность играет не маловажную роль при выборе. Важно, чтобы выходная мощь магнитолы была больше электрической мощности динамиков. Подобная характеристика предоставлена в инструкции к товару. Необходимо изучить ее внимательно, чтобы не пришлось менять покупку.
  3. Стоит обращать внимание на диффузор — его материал. Обычно он делается из картона или бумаги. Обрабатывается специальной пропиткой. Если диффузор качественный, подвес на нем изготовлен из резины или каучука. В дешевых или поддельных динамиках присутствуют элементы из ткани.

Такие изделия лучше не покупать. Звука качественного из них не получится. Только каучуковые подвесы способны функционировать нормально.

Динамик для автомагнитолы

Наверное, многих владельцев машин интересовало то, как выбрать динамики для автомагнитолы. Совершить грамотный выбор не так уж и сложно, если знать определенные правила.
Динамики для автомагнитолы подбираются в соответствие с основными факторами, которые надо учитывать. О них и о многом другом пойдет речь в статье.

Основные факторы влияющие на качество динамиков

Чего хочет каждый, намереваясь приобрести динамики? Конечно же, добиться получения в своем салоне мощного и самое главное - чистого звука.
Естественно, что одного качества динамиков для этого будет недостаточно, ведь множество факторов влияет на объемное звучание, но все же. Качественные динамики, подобранные грамотно и в соответствие с правилами, это основа основ.
Итак, для того чтобы получить чистый и объемный звук, следует учитывать хотя бы вот эти главные факторы:

  • расположение динамиков в салоне машины;
  • качественная шумо- и виброизоляция;
  • и многое другое.

Типы колонок

Первый вопрос, который зададут покупателю в магазине акустики будет следующим: а какие вы предпочитаете приобрести динамики, коаксиальные или компонентные?

Коаксиальные колонки

Компонентные колонки представляют собой устройство, где высокочастотные динамики находятся в отдельности от средних и низкочастотных. Это уже полностью профессиональные колонки, позволяющие разобрать мелодию на составляющие и наслаждаться музыкой в полную силу.

Примечание. Даже неискушенному человеку, который прослушает музыку через эти динамики, удастся распознать игру отдельных музыкальных инструментов, настолько все эффективно продумано в них. Не стоит говорить, что качество звука в этих колонках значительно выше, чем в коаксиальных, но стоят они и намного дороже.

Компонентные колонки предназначены для воспроизведения звука в определенном диапазоне частот. Качество звучания всегда на должном уровне у этих динамиков, а колонки необходимо устанавливать согласно следующим правилам.
Итак:

  • Если динамики подобраны малогабаритные, то они воспроизводят только верхние частоты (подробно написано об этом ниже). По этой причине их нужно постараться разместить так, чтобы звук шел непосредственно на водителя или пассажира.
    Если удастся установить их на передней панели или на стойке, то это будет идеалом.
  • Колонки размером больше уже впереди не установишь (хотя и это возможно), но зато они воспроизводят средние и низкие частоты. Их можно легко установить в дверях машины или сзади, прямо на полке стекла.
    В принципе, никакой разницы в размещении крупногабаритных колонок нет.

Размер колонок

Конечно же, это второй по значимости вопрос, который задаст продавец в магазине. В автомобиле обычно не удается устанавливать огромные размеры, и каждый владелец должен об этом помнить.
Кроме того, если приобрести динамики, размером больше, чем штатные, предназначенные для этого автомобиля производителем, который заранее приготовил для них место, то придется проводить доработки.

Примечание. Надо знать, что колонки размером 10-13 см (4-5 дюймов) по диагонали способны воспроизводить лишь высокие частоты. А вот колонки размером 16-17 см (6-6,5 дюймов) по диагонали воспроизводят и низкие частоты вдобавок.

Можно сказать, что это и есть основное различие в размерах. Колонки большие, в любом случае будут лучше воспроизводить звук, но это не аксиома.

Мощность

Наверное, это самый важный параметр для дилетантов, вообразивших, что они понимают толк в музыке. Но спешим их разочаровать.
Оказывается, мощность динамиков, сама по себе не может выступать, как характеристика качества. Существует даже правило, по которому эта самая мощность должна подбираться, в противном случае чистого звука не жди.
Итак, параметр мощности по правилам не должен быть меньше мощности автомагнитолы. Это уже аксиома, с которой никак уж не поспоришь.
Потеря качества звука и многое другое – результат неправильного подбора мощности динамиков. С другой стороны, мощность динамиков не должна намного превышать параметры автомагнитолы, так как это тоже ни к чему хорошему не приведет.
Мощность, как таковую, принято делить на:

  • номинальную мощность;
  • максимальную мощность;
  • пиковую мощность.

Самой маленькой из трех выступает, естественно, номинальная мощность, но она и является самой правильной. Некоторые недобросовестные производители, в целях привлечь клиентуру, указывают в паспортных данных максимальную или пиковую мощность.
В действительности же, грамотный покупатель, знающий о номинальной мощности, должен искать в тех данных именно ее значение, как определяющее и единственно верное.

Примечание. Именно номинальная мощность определяет границы, в которых можно долго и громко слушать музыку.

Нередко динамик с малой номинальной мощностью способен развивать такой же уровень звука, как и более мощный (при условии, что его чувствительность выше).
Мощность не может выступать в роли единственного критерия качественного звучания, ведь повысить показатели можно и еще одним способом: установив акустическую систему с сопротивлением 2,5-3,5 Ом. Кроме того, огромное значение имеет и усилитель, который обязан быть адаптирован к мощности, а не то избежать скорого выхода из строя техники, насколько бы дорогой она ни была, не удастся.

Акустическое оформление

Это один из важных факторов, влияющих на воспроизведение звука. Разновидностей акустического оформления известно множество, но принято подразделять его на два основных: разгруженное и нагруженное.

Примечание. Разгруженное оформление подразумевает ограничение колебаний диффузора жесткостью подвеса. Что касается нагруженного оформления, то оно подразумевает ограничение колебаний не только жесткостью подвеса, но и сопротивлением излучению.

Кроме того, принято делить акустическое оформление на системы одинарного и двойного действия. Для первого характерно излучение звука только одной стороной диффузоров, а для второго – с обеих сторон.
Теперь рассмотрим наиболее популярные типы акустического оформления:

  • «Закрытый ящик» – корпус колонок, который покрывается звукопоглощающими составляющими, эффективно гасящие волны. Этот тип акустического оформления идеально подойдет тем меломанам, которые на первое место ставят качественное воспроизведение или говоря иначе, чтобы была небольшая потеря звукового давления и все это компенсировалось простотой и малыми размерами динамика.
  • Фазоинвертор – подразумевающий корпус, в котором проделано специальное отверстие. Оно отвечает за связь внешнего и внутреннего воздуха.
    Идеально подойдет меломанам, которые предпочитают слушать звук одновременно двумя кварталами.
  • Свободное акустическое оформление, подразумевающее использование большого корпуса, выступающего в роли экрана.

Остальные факторы

Кроме разобранных нами типов колонок, их размеров и мощности, существуют и другие факторы, многими воспринимаемые, как мелочи.
Но не будем забывать, что порой именно мелочи решают итог какого-нибудь события:

  • Sensivity – или входная чувствительность динамиков. Этот параметр чем он выше, тем лучше.
    Опять же, здесь не все так просто и чтобы ничего не напутать, помним, что рекомендуемый показатель этой чувствительности должен быть в пределах 92.

  • FS – это уже резонансная чистота воспроизведения, также выступающая как отдельный фактор, влияющий на звук. Чем она ниже в значении, тем лучше и динамики будут в состоянии выдавать более глубокие басы.
    Нормальным и рекомендуемом значением в этом случае является предел 60-75.
  • Диапазон воспроизводимых частот – является показателем, который указывает частотные границы. Рекомендуемое значение +/- 3 дБ.
  • QTS – или добротность звука. На этот фактор также надо тщательно обратить внимание.
    Дело в том, что если динамики будут устанавливаться в двери автомобиля (что на сегодняшний день модно), то значение добротности колонок должна превышать значение 0,6. В противном случае, ни о каком качестве звучания и речи быть не может.

Примечание. Нормальный правильный звук должен доходить до человека спереди. Это закон физики, но в автомобиле нет такой возможности, чтобы установить колонки впереди.

Некоторые владельцы, правда, умудряются это сделать, внося кардинальные конструктивные изменения, доработав стойки и торпедо, но это не каждому по карману. В этой связи звук с динамиков, установленных в двери, будет идти сбоку и в ноги.
Поэтому показатель добротности должен быть оценен правильно.

Заключение

В конце нашей статьи хотелось бы привести список или вернее алгоритм действий, который будет наиболее правильным при выборе .
Итак:

  • Определяем строение динамиков, отталкиваясь от способа установки и количества полос воспроизведения звука.
  • Динамики выбираем в соответствие с техническими стандартами (номинальная мощность, соответствие усилителя и т.д.).
  • Правильный размер динамиков не забываем учесть, памятуя, что существуют стандартные размеры.
  • Подбираем того производителя колонок, которого рекомендует завод изготовитель автомобиля.
  • Определяем тип акустического оформления.

Инструкцию о том, как установить непосредственно динамики в автомобиль своими руками, можно легко скачать в сети. В процессе работ будут полезны фото и видео – материалы.
Цена на динамики бывает разная и все зависит от определенной модели, размера и технических возможностей.

Рассмотрим конструкцию и характеристики типового динамического громкоговорителя (динамика). Внешние размеры - обычно от 5 до 30 см в переводе на диаметр диффузора, масса соответствует размерам.

Диффузор – эта штука воспроизводит звук. Материал диффузора - чаще всего, прессованная бумага (целлюлоза) с пропиткой для ширпотребных моделей. Основное - чтобы диффузор не подвергался деформациям во время работы. Для моделей, предназначенных для работы в автомобилях, часто используют вспененные пластмассы, как материал не гигроскопичный и обладающий достаточной жёсткостью. Для дорогих моделей выбор материала диффузора более широк, и определяется, в основном, «крутизной» разработчика. Вошло в моду изготовление диффузора из алюминия, нередко используются комбинированные материалы (сандвич).

Магнитная система – создаёт магнитное поле, в котором перемещается катушка. Очевидно, что чем сильнее это поле, тем громче «орёт» динамик, поэтому конструкторы стремятся использовать высокоэффективные магнитные материалы. При ударах, самостоятельной разборке магнитной системы, высокой температуре – характеристки могут необратимо ухудшится. Иногда магнитная система сверху экранируется (например, для динамиков, встраиваемых в телевизоры и мониторы). Раньше встречались конструкции, где для усиления магнитного поля на магнитную систему наматывалась дополнительная катушка, питаемая от вспомогательного источника.

Керн – передаёт магнитное поле внутрь катушки, но не должен сам намагничиваться, поэтому изготавливается из магнитомягкого материала.

Каркас катушки - «носитель» катушки, изготовляется из тонкого прочного материала, не экранирующего магнитное поле и обладающего минимальной массой. В старых конструкциях - исключительно электрокартон, в новых - алюминий.

Звуковая катушка – к ней и подводится мощность, развиваемая усилителем. Активное сопротивление катушки (по постоянному току):
от 2 Ом (для автомобильных динамиков);
4 - 6 - 8 Ом (наиболее распространены);
16 - 32 Ома (для экономичных или специальных целей).

Катушка чаще всего наматывается в два слоя обычным проводом в лаковой изоляции, но в особо мощных конструкциях провод может быть и прямоугольного сечения - для увеличения эффективного заполнения зазора. Катушка приклеивается к каркасу. При некачественной проклейке, или при перегрузке динамика часть витков может «болтаться» внутри и создавать звуковые эффекты, не относящиеся к категории высококачественного звуковоспроизведения. В прошлом веке радиолюбители самостоятельно перематывали звуковые катушки, тем более, что конструкция многих динамиков это позволяла.

Центрирующая шайба – назначение понятно из названия. Главное - не создавать помех перемещению звуковой катушки, и быть воздухопроницаемой, иначе внутри магнитной системы,где находится катушка, образуется замкнутый объём. Но о его вреде мы вспомним дальше, когда будем рассматривать акустическое оформление громкоговорителей. Материал шайбы - что-то вроде пропитанной марли - для ширпотреба, и что угодно - для эксклюзива.

Из-за повышенной влажности или других нехороших влияний может нарушаться центровка, дефект не устраним без разборки динамика. Проверить центровку можно,аккуратно нажимая на диффузор и прислушиваясь к звукам внутри- их быть не должно!

Выводы катушки - выполняются спецпроводом «мишурой» из перемешанных тонких медных и шёлковых нитей. Выводы не должны мешать перемещению диффузора. Из-за постоянных перемещений имеют склонность к обрывам около контактных пятачков, где припаиваются к выводам звуковой катушки. Хорошей альтернативой является провод МГТФ со снятой изоляцией. Слишком длинные выводы могут тереться об диффузор и создавать интересные звуки, придающие неповторимый колорит звучанию вашей акустики, но не ценимые другими слушателями.

Зазор – зазор между магнитной системой и керном, где перемещается звуковая катушка. Чем меньше зазор, тем выше в нём индуктивность, и тем выше эффективность работы динамика.

Предпринимались неоднократные попытки увеличить индуктивность без увеличения зазора путём введения туда магнитной жидкости. Но это приводило к увеличению сопротивления перемещению диффузора и повышению нижней границы воспроизводимых частот. Попадание в зазор мусора чревато искажениями звука, поэтому зазор обычно закрывают колпачком (на рисунке отсутствует). Заодно колпачок улучшает воспроизведение верхних звуковых частот.

Рама - она же каркас, она же диффузородержатель. В дешёвых конструкциях - из пластмассы, в ширпотребе - из штампованного листа, в более дорогих конструкциях - литьё из алюминиевых сплавов. Обычно в раме присутствуют «окна» для свободного перемещения воздуха, но в высокочастотных динамиках это не обязательно. Рама должна быть очень жёсткой, не резонировать, быть удобной при установке динамика в корпус и радовать взор счастливого обладателя девайса.

О характеристиках,непосредственно влияющих на звук, расскажем в следующей статье.

Мы рассмотрели общие вопросы конструкции динамиков, теперь рассмотрим некоторые экзотические конструкции.

Форма диффузора динамика - правильный круг, как самый технологичный элемент.

Эллиптические формы - только для уменьшения габаритов, и не имеют каких-либо достоинств. А японцы сподобились сделать даже квадратный, который очень красиво вписывается в прямоугольный корпус. Материал диффузора - тончайший срез берёзы, выдержанной в саке*****. Истинные гурманы, безусловно, по достоинству оценивают сей девайс.

НАСА (которая в USA) для испытания спускаемых аппаратов «Джемини» соорудило динамик более метра в диаметре с МЕХАНИЧЕСКИМ ПРИВОДОМ. Впоследствии его передали дискотеке в Атланте. Звучание этого монстра потрясало до глубины души в прямом смысле этого слова.

Для высокочастотных динамиков (пищалок) диффузор как понятие практически отсутствует, звук воспроизводится сферическим колпачком, приклеенном к катушке. Для уменьшения массы колпачок делают из шёлка, иногда - из бериллия, наносят керамическое или даже алмазное напыление с целью получения прозрачного, как бриллиант, звучания.

Очень ограниченным тиражом выпускаются ЭЛЕКТРОСТАТИЧЕСКИЕ излучатели звука, которые уже нельзя назвать динамиками. В них роль диффузора выполняет тонкая плёнка с напылённой фольгой, и всё это помещено в гигантский конденсатор, поляризуемый напряжением 1000 Вольт. Подобная конструкция не требует специального акустического оформления и прекрасно звучит на частотах выше 100 Гц.

У нас в стране производились ИЗОДИНАМИЧЕСКИЕ излучатели - тоже плёнка с напылёнными проводниками, но всё находится между двумя многополюсными магнитами. Идеальный излучатель частот свыше 5 кГц.

Пьезокерамические излучатели и динамики-экзотика распространённая (см. бумбоксы с двух-трёхполосными излучателями). Моему коту не доводилось слышать ни одного пьезоизлучателя, претендующего на Hi-Fi звуковоспроизведение. Все их можно отнести к категории Hi-Hi.

И самый экзотический излучатель - ионофон. Демонстрировался на всесоюзной выставке творчества радиолюбителей где-то в 50-х годах прошлого века. Поток ионов воздуха модулировался звуковой частотой. Качество звучания - выше всяких похвал. Недостатки - большие габариты и вредная ионизация воздуха. Похоже, заграница временами пытается возродить подобные излучатели, но в серию они не пойдут - обычные динамики гораздо проще и дешевле, а для улавливания разницы в звучании нужны тренированные уши. О комплексе упражнений, развивающих уши, намечается специальная статья.

Взято с сайта журнала "Автозвук"

Контекст

В предыдущей части нашего разговора выяснилось, чем хороши различные типы акустического оформления и чем плохи. Казалось бы, теперь "цели ясны, за работу, товарищи.." Не тут-то было. Во-первых, акустическое оформление, в которое не установлен собственно динамик - всего лишь с той или иной степенью тщательности собранная коробка. А зачастую и собрать-то ее нельзя, пока не будет определено, какой динамик окажется в нее установлен. Во-вторых, и в этом главная потеха в проектировании и изготовлении автомобильных сабвуферов - характеристики сабвуфера немногого стоят вне контекста характеристик, хотя бы самых основных, автомобиля, где он будет работать. Есть еще и в-третьих. Мобильная акустическая система, одинаково приспособленная для любой музыки - редко достигаемый идеал. Грамотного установщика можно узнать обычно по тому, что, "снимая показания" с клиента, заказывающего аудиоустановку, он просит принести образцы того, что клиент будет слушать на заказанной им системе после ее завершения.

Как видно, факторов, влияющих на решение - очень много и свести все к простым и однозначным рецептам нет никакой возможности, что и превращает создание мобильных аудиоустановок в занятие сильно родственное искусству. Но некоторые общие ориентиры наметить все же можно.

Цифирь

Робких, ленивых и гуманитарно образованных спешу предупредить - формул практически не будет. Покуда возможно, попытаемся обойтись даже без калькулятора - забытым методом устного счета.

Сабвуферы - единственное звено автомобильной акустики, где измерение гармонии алгеброй - дело небезнадежное. Прямее скажу - без расчета спроектировать сабвуфер просто немыслимо. В качестве же исходных данных для этого расчета выступают параметры динамика. Какие? Да уж не те, которыми вас гипнотизируют в магазине, будьте уверены! Для расчета, даже самого приблизительного, характеристик низкочастотного громкоговорителя требуется знать его электромеханические параметры, которых - тьма. Это и резонансная частота, и масса подвижной системы, и индукция в зазоре магнитной системы и еще по меньшей мере два десятка показателей, понятных и не очень. Расстроены? Неудивительно. Так же расстроены оказались лет около двадцати назад два австралийца - Ричард Смолл и Невил Тиль. Они предложили вместо гор цифири использовать универсальный и довольно компактный набор характеристик, увековечивший, вполне заслуженно, их имена. Теперь, когда вы увидите в описании динамика таблицу, озаглавленную Thiel/Small parameters (или просто T/S) - вы знаете, о чем речь. А если такой таблицы вы не найдете - переходите к следующему варианту - этот - безнадежен.

Минимальный набор характеристик, которые вам понадобится выяснить - это:

Собственная резонансная частота динамика Fs

Полная добротность Qts

Эквивалентный объем Vas.

В принципе, есть и другие характеристики, которые полезно было бы знать, но этого, в общем-то, хватит. (сюда не включен диаметр динамика, поскольку его и так видно, без документации.) Если хотя бы одного параметра из "чрезвычайной тройки" нехватает, дело - швах. Ну а теперь - что все это означает.

Собственная частота - это частота резонанса динамика без какого-либо акустического оформления. Она так и измеряется - динамик подвешивают в воздухе на возможно большем расстоянии от окружающих предметов, так что теперь его резонанс будет зависеть только от его собственных характеристик - массы подвижной системы и жесткости подвески. Бытует мнение, что чем ниже резонансная частота, тем лучше выйдет сабвуфер. Это верно только отчасти, для некоторых конструкций излишне низкая частота резонанса - помеха. Для ориентира: низкая - это 20 - 25 Гц. Ниже 20 Гц - редкость. Выше 40 Гц - считается высокой, для сабвуфера.

Полная добротность. Добротность в данном случае- не качество изделия, а соотношение упругих и вязких сил, существующих в подвижной системе динамика вблизи частоты резонанса. Подвижная система динамика во много сродни подвеске автомобиля, где есть пружина и амортизатор. Пружина создает упругие силы, то есть накапливает и отдает энергию в процессе колебаний, а амортизатор - источник вязкого сопротивления, он ничего не накапливает, а поглощает и рассеивает в виде тепла. То же самое происходит при колебаниях диффузора и всего, что к нему прикреплено. Высокое значение добротности означает, что преобладают упругие силы. Это - как автомобиль без амортизаторов. Достаточно наехать на камешек и колесо начнет прыгать, ничем не сдерживаемое. Прыгать на той самой резонансной частоте, которая присуща этой колебательной системе.

Применительно к громкоговорителю это означает выброс частотной характеристики на частоте резонанса, тем больий, чем выше полная добротность системы. Самая высокая добротность, измеряемая тысячами - у колокола, который в результате ни на какой частоте, кроме резонансной звучать не желает, благо еще, что этого от него никто и не требует.

Популярный метод диагностики подвески машины покачиванием - не что иное как измерение добротности подвески кустарным способом. Если теперь привести подвеску в порядок, то есть прицепить параллельно пружине амортизатор, накопленная при сжатии пружины энергия уже не вся вернется обратно, а частично будет загублена амортизатором. Это - снижение добротности системы. Теперь опять вернемся к динамику. Ничего, что мы туда-сюда ходим? Это, говорят, полезно…С пружиной у динамика все, вроде бы, ясно. Это - подвеска диффузора. А амортизатор? Амортизаторов - целых два, работающих параллельно. Полная добротность динамика складывается из двух: механической и электрической. Механическая добротность определяется главным образом выбором материала подвеса, причем в основном - центрирующей шайбы, а не внешнего гофра, как иногда полагают. Больших потерь здесь обычно не бывает и вклад механической добротности в полную не превышает 10 - 15%. Основной вклад принадлежит электрической добротности. Самый жесткий амортизатор, работающий в колебательной системе динамика - это ансамбль из звуковой катушки и магнита. Будучи по своей природе электромотором, он как и полагается мотору, может работать как генератор и именно этим и занят вблизи частоты резонанса, когда скорость и амплитуда перемещения звуковой катушки - максимальны. Двигаясь в магнитном поле, катушка вырабатывает ток, а нагрузкой для такого генератора служит выходное сопротивление усилителя, то есть практически - ноль. Получается такой же электрический тормоз, каким снабжены все электрички. Там тоже при торможении тяговые двигатели заставляют работать в режиме генераторов, а нагрузка их - батареи тормозных сопротивлений на крыше.

Величина вырабатываемого тока будет, естественно, тем больше, чем сильнее магнитное поле, в котором движется звуковая катушка. Получается, что чем мощнее магнит динамика, тем ниже, при прочих равных, его добротность. Но, конечно, поскольку в формировании этой величины участвуют и длина провода обмотки, и ширина зазора в магнитной системе, окончательный вывод только на основании размера магнита было бы делать преждевременно. А предварительный - почему нет?…

Базовые понятия - низкой считается полная добротность динамика меньше 0,3 - 0,35; высокой - больше 0,5 - 0,6.

Эквивалентный объем. Большинство современных головок громкоговорителей основано на принципе "акустического подвеса".

У нас их иногда называют "компрессионными", что неправильно. Компрессионные головки - это совсем другая история, связанная с применением в роли акустического оформления рупоров.

Концепция акустического подвеса заключается в установке динамика в такой объем воздуха, упругость которого сопоставима с упругостью подвеса динамика. При этом получается, что в параллель к уже имеющейся в подвеске пружине поставили еще одну. Эквивалентным объемом будет при этом такой, при котором веновь появившаяся пружина равна по упругости уже имевшейся. Величина эквивалентного объема определяется жесткостью подвеса и диаметром динамика. Чем мягче подвес, тем больше будет величина воздушной подушки, присутствие которой начнет беспокоить динамик. То же происходит с изменением диаметра диффузора. Большой диффузор при одном и том же смещении будет сильнее сжимать воздух внутри ящика, тем самым испытывая большую ответную силу упругости воздушного объема.

Именно это обстоятельство зачастую определяет выбор размера динамика, исходя из имеющегося объема для размещения его акустического оформления. Большие диффузоры создают предпосылки для высокой отдачи сабвуфера, но требуют и больших объемов. Аргумент из репертуара комнаты в конце школьного коридора "а у меня больше" здесь надо применять осмотрительно.

У эквивалентного объема интересные родственные связи с резонансной частотой, без осознания которых легко промахнуться. Резонансная частота определяется жесткостью подвеса и массой подвижной системы, а эквивалентный объем - диаметром диффузора и той же жесткостью.

В результате возможна такая ситуация. Предположим, имеется два динамика одинакового размера и с одинаковой частотой резонанса. Но только у одного из них это значение частоты получилось вследствие тяжелого диффузора и жесткой подвески, а у другого - наоборот, легкого диффузора на мягком подвесе. Эквивалентный объем у такой парочки при всей внешней схожести может различаться очень существенно, и при установке в один и тот же ящик результаты будут драматически различны.

Итак, установив, что означают жизненно важные параметры, начнем наконец выбирать суженого. Модель будет такая - считаем, что вы определились, на основе, скажем, материалов предыдущей статьи этой серии, с типом акустического оформления и теперь надо выбрать для него динамик из сотен альтернатив. Освоив этот процесс, обратный, то есть выбор подходящего оформления под выбранный динамик, дастся вам без труда. В смысле - почти без труда.

Закрытый ящик

Как было сказано в приведенной статье, закрытый ящик - простейшее акустичнское оформление, но далеко не примитивное, напротив, имеющее, в особенности в автомобиле, ряд важнейших преимуществ перед другими. Популярность его в мобильных приложениях нисколько не угасает, потому с него и начнем.

Что происходит с характеристиками динамика при установке в закрытый ящик? Это зависит от одной-единственной величины - объема ящика. Если объем настолько велик, что динамик его практически не замечает, мы приходим к варианту бесконечного экрана. На практике такая ситуация достигается, когда объем ящика (или другого замкнутого объема, находящегося позади диффузора, а проще говоря, что там скрывать - багажника автомобиля) превышает эквивалентный объем динамика втрое или больше. Если такое соотношение выполняется, резонансная частота и полная добротность системы останутся практически такими же, какими они были у динамика. А значит - их и выбирать надо соответственно. Известно, что акустическая система будет обладать наиболее гладкой частотной характеристикой при величине полной добротности, равной 0,7. При меньших значениях улучшаются импульсные характеристики, но спад частотки начинается довольно высоко по частоте. При больших - частотная характеристика приобретает подъем вблизи резонанса, а переходные характеристики несколько ухудшаются. Если вы ориентируетесь на классическую музыку, джаз или акустические жанры - оптимальным выбором будет несколько передемпфированная система с добротностью 0,5 - 0,7. Для более энергичных жанров не повредит подчеркивание низов, которое достигается при добротности 0,8 - 0,9. И наконец, любители рэпа оттянутся по полной программе, если из система будет обладать добротностью, равной единице или даже выше. Значение 1,2 надо, пожалуй, признать предельным для любого жанра, претендующего на музыкальность.

Надо еще иметь в виду, что при установке сабвуфера в салоне машины происходит подъем низких частот, начиная с определенной частоты, обусловленной размерами салона. Типичные значения для начала подъема АЧХ 40 Гц для большой машины, вроде джипа или мини-вэна; 50 - 60 для средней, вроде восьмерки или "корейки"; 70 - 75 для маленькой, с Таврию.

Теперь ясно - для установки в режиме бесконечного экрана (или Freeair, если вас не смущает, что последнее название запатентовано Stillwater Designs) нужен динамик с полной добротностью не ниже 0,5, а то и выше и резонансной частотой никак не ниже герц эдак 40 - 60, в зависимости от того, во что будете ставить. Такие параметры обычно означают довольно жесткий подвес, только это и спасает динамик от перегрузки в условиях отсутствия "акустической поддержки" со стороны закрытого объема. Вот пример - фирма Infinity выпускает в сериях Reference и Kappa варианты одних и тех же головок с индексами br (bass reflex) и ib (infinite baffle).Параметры Тиля-Смолла, например, у десятидюймовой Reference различаются так:

Параметр T/S 1000w.br 1000w.ib

Fs 26 Гц 40 Гц

Vas 83 л 50 л

Видно, что вариант ib по резонансной частоте и добротности - готовенький для работы "как есть", а судя и по частоте резонанса и по эквивалентному объему - эта модификация намного жестче другой, оптимизированной для работы в фазоинверторе, а, значит, более вероятно выживет в нелегких условиях Freeair.

А что случится, если, не обратив внимания на маленькие буковки, вы загоните в эти условия похожий, как две капли воды динамик с индексом br? А вот что: из-за низкой добротности частотная характеристика начнет заваливаться уже на частотах около 70 - 80 Гц, а ничем не сдерживаемая "мягкая" головка будет себя чувствовать очень неуютно на нижнем краю диапазона, причем перегрузить ее там - проще простого.

Итак, договорились:

Для применения в режиме "бесконечного экрана" надо выбирать динамик с высокой полной добротностью (не меньше 0,5) и резонансной частотой (не ниже 45 Гц), уточнив эти требования в зависимости от типа преимущественного музыкального материала и размера салона.

Теперь о "небесконечном" объеме. Если поставить динамик в объем, сопоставимый с его эквивалентным объемом, система приобретет характеристики, существенно отличающиеся от тех, с которыми в эту систему явился динамик. Прежде всего при установке в закрытый объем возрастет резонансная частота. Жесткость-то увеличилась, а масса - осталась прежней. Возрастет и добротность. Судите сами - приставив в помощь жесткости подвеса жесткость небольшого, то есть неподатливого воздушного объема, мы тем самым как бы поставили вторую пружину, а амортизатор оставили старый.

С уменьшением объема добротность системы и ее резонансная частота растут одинаково. Значит, если мы увидели динамик с добротностью, скажем, 0,25, а хотим иметь систему с добротностью, скажем, 0,75, то резонансная частота тоже увеличится втрое. А какая она там у динамика? 35 Гц? Так значит, в правильном, с точки зрения формы частотной характеристики, объеме она окажется 105 Гц, а это, знаете ли, уже не сабвуфер. Значит - на подходит. Вот видите, и калькулятор не понадобился. Смотрим другой. Резонансная частота 25 Гц, добротность 0,4. Получается система с добротностью 0,75 и частотой резонанса где-то около 47 Гц. Вполне достойно. Попробуем тут же, не отходя от прилавка, прикинуть, какого объема понадобится ящик. Написано, что Vas = 160 л (или же 6 cu.ft, что более вероятно).

(Тут бы формулу написать - она простенькая, но нельзя - обещал). Поэтому для расчетов у прилавка дам шпаргалку: скопируйте и положите в бумажник, если покупка басового динамика входит в планы вашего шопинга:

Резонансная частота и добротность возрастут в Если объем ящика составляет от Vas

1,4 раза 1

1,7 раза 1/2

2 раза 1/3

3 раза 1/8

У нас - примерно вдвое, так что получается ящичек объемом литров 50 - 60. Многовато будет….Давайте следующий. И так далее.

Получается, что для того, чтобы вышло мыслимое акустическое оформление, параметры динамика мало того, что должны находиться в каком-то определенном коридоре значений, но еще и быть увязаны между собой.

Эту увязку опытные люди свели в показатель Fs/Qts.

Если величина Fs/Qts составляет 50 или меньше, динамик рожден для закрытого ящика. Необходимый объем ящика при этом будет тем меньше, чем ниже Fs или чем меньше Vas.

По внешним данным "прирожденных затворников" можно узнать по тяжелым диффузорами и мягким подвесам (что дает низкую резонансную частоту), не очень большим магнитам (чтобы добротность была не слишком низкой), длинным звуковым катушкам (поскольку ход диффузора у динамика, работающего в закрытом ящике, может достигать довольно больших значений).

Фазоинвертор

Другой тип популярного акустического оформления - фазоинвертор, при всем горячем желании у прилавка посчитать нельзя, даже приблизительно. Но прикинуть пригодность для него динамика - можно. А про расчет мы вообще будем говорить отдельно.

Резонансная частота системы этого типа определяется уже не одной только резонансной частотой динамика, но и настройкой фазоинвертора. Это же относится и к добротности системы, которая может существенно меняться с изменением длины тоннеля даже при неизменном объеме корпуса. Поскольку фазоинвертор может быть, в отличие от закрытого ящика, настроен на частоту, близкую или даже ниже, чем у динамика, собственной резонансной частоте головки "позволено" быть выше, чем в предыдущем случае. Это означает, при удачном выборе, более легкий диффузор и, как следствие, улучшение импульсных характеристик, в чем фазоинвертор нуждается, поскольку его "врожденные" переходные характеристики не из лучших, хуже, чем у закрытого ящика, по крайней мере. Зато добротность желательно иметь возможно ниже, не больше 0,35. Сводя это в тот же показатель Fs/Qts, формула выбора динамика для фазоинвертора выглядит просто:

Для работы в фазоинверторе подходят динамики, у которых показатель Fs/Qts составляет 90 и больше.

Внешние признаки фазоинверсной породы: легкие диффузоры и мощные магниты.

Бандпассы (совсем коротко)

Полосовые громкоговорители, при всех своих громких достоинствах (это в смысле наибольшей эффективности, в сравнении с другими типами) - наиболее сложны в расчете и изготовлении, а согласование их характеристик с внутренней акустикой автомобиля при недостаточном опыте может превратиться в кромешный ад, поэтому с этим видом акустического оформления лучше идти по камушкам и воспользоваться рекомендациями изготовителей динамиков, хоть это и связывает руки. Однако, если руки все же находятся в развязанном состоянии и чешутся попробовать: для одиночных бандпассов подходят практически те же динамики, что и для фазоинверторов, а для двойных или квазиполосовых - они же или, что более желательно, головки с показателем Fs/Qts равным 100 и выше.

Полезные темы:

  • 19.01.2006 15:47 # 0+

    Если Вы впервые на нашем Форуме:

    1. Обратите внимание на список полезных тем в первом сообщении.
    2. Термины и наиболее популярные модели в сообщениях подсвечиваются быстрыми подсказками и ссылками на соответствующие статьи в МагВикипедии и Каталоге.
    3. Для изучения Форума не обязательно регистрироваться - практически весь профильный контент, включая файлы, картинки и видео, открыты для гостей.

    С наилучшими пожеланиями,
    Администрация Форума автозвука Магнитола

  • Параметры Thiele & Small

    Это группа параметров, введенных A.N. Thiele и позднее R.H. Small, при помощи которых можно полностью описать электрические и механические характеристики средне - и низкочастотных головок громкоговорителей, работающих вкомпрессионной области, т.е. тогда, когда в диффузоре не возникают продольные колебания и его можно уподобить поршню.

    Fs (Гц) - частота собственного резонанса головки громкоговорителя в открытом пространстве. В этой точке ее импеданс максимален.

    Fc (Гц) - частота резонанса акустической системы для закрытого корпуса.

    Fb (Гц) - частота резонанса фазоинвертора.

    F3 (Гц) - частота среза, на которой отдача головки снижается на 3 dB.

    Vas (куб.м) - эквивалентный объем. Это возбуждаемый головкой закрытый объем воздуха, имеющий гибкость, равную гибкости Cms подвижной системы головки.

    D (м) - эффективный диаметр диффузора.

    Sd (кв.м) - эффективная площадь диффузора (примерно 50-60% конструктивной площади).

    Xmax (м) - максимальное смещение диффузора.

    Vd (куб.м) - возбуждаемый объем (произведение Sd на Xmax).

    Re (Ом) - сопротивление обмотки головки постоянному току.

    Rg (Ом) - выходное сопротивление усилителя с учетом влияния соединительных проводов и фильтров.

    Qms (безразмерная величина) - механическая добротность головки громкоговорителя на резонансной частоте (Fs), учитывает механические потери.

    Qes (безразмерная величина) - электрическая добротность головки громкоговорителя на резонансной частоте (Fs), учитывает электрические потери.

    Qts (безразмерная величина) - полная добротность головки громкоговорителя на резонансной частоте (Fs), учитывает все потери.

    Qmc (безразмерная величина) - механическая добротность акустической системы на резонансной частоте (Fs), учитывает механические потери.

    Qec (безразмерная величина) - электрическая добротность акустической системы на резонансной частоте (Fs), учитывает электрические потери.

    Qtc (безразмерная величина) - полная добротность акустической системы на резонансной частоте (Fs), учитывает все потери.

    Ql (безразмерная величина) - добротность акустической системы на частоте (Fb), учитывающая потери перетекания.

    Qa (безразмерная величина) - добротность акустической системы на частоте (Fb), учитывающая потери поглощения.

    Qp (безразмерная величина) - добротность акустической системы на частоте (Fb), учитывающая прочие потери.

    N0 (безразмерная величина, иногда %) - относительная эффективность (К.П.Д.) системы.

    Cms (м/Н) - гибкость подвижной системы головки громкоговорителя(смещение под воздействием механической нагрузки).

    Mms (кГ) - эффективная масса подвижной системы (включает массу диффузора и колеблющегося вместе с ним воздуха).

    Rms (кГ/с) - активное механическое сопротивление головки.

    B (Тл) - индукция в зазоре.

    L (м) - длина проводника звуковой катушки.

    Bl (м/Н) - коэффициент магнитной индукции.

    Pa - акустическая мощность.

    Pe - электрическая мощность.

    C=342 м/с - скорость звука в воздухе в нормальных условиях.

    P=1.18 кГ/м^3 - плотность воздуха в нормальных условиях.

    Le - индуктивность катушки.

    BL – значение плотности магнитного потока, умноженный на длину катушке.

    Spl – уровень звукового давления в дБ.

  • Re: Параметры Тиля-Смолла и акустическое оформление динамика.

    Классная программа BassBox 6.0 PRO для расчёта акустического оформления динамика 12мб, серийник внутри в файле *.txt:

    Программа имеет огромную базу данных по параметрам динов большого количества производителей, умеет считать объём с учётом толщины стенок. Вообщем очень удобная.

  • Параметры Смолла-Тиле

    Параметры Смолла-Тиле

    Вплоть до 1970 года не существовало удобных и доступных, принятых в качестве стандартных для всей индустрии методов получения сравнительных данных о работе громкоговорителей. Отдельные тесты, проводимые лабораториями, были слишком дороги и трудоемки. При этом методы получения сравнительных данных о громкоговорителях были нужны как покупателям для выбора нужной модели, так и производителям аппаратуры для более точного описания своей продукции и аргументированного сравнения различных устройств.
    Конструкция громкоговорителяВ начале семидесятых на конференции AES был представлен доклад, авторами которого были Невилл Тиле (Neville Thiele) и Ричард Смолл (Richard Small). Тиле был главным инженером по разработкам и развитию в Австралийской вещательной комиссии (Australian Broadcasting Commission). В то время он заведовал Федеральной инженерной лабораторией (Federal Engineering Laboratory) и занимался анализом работы аппаратуры и систем для передачи аудио- и видеосигналов. Смолл учился в аспирантуре Школы инженеров университета Сиднея.
    Целью Тиле и Смолла было показать, как выведенные ими параметры помогают подобрать кабинет к конкретному громкоговорителю. Однако в результате получилось, что эти измерения дают значительно больше информации: по ним можно сделать гораздо более глубокие выводы о том, как работает громкоговоритель, чем на основе привычных данных о размере, максимальной выходной мощности или чувствительности.
    Перечень параметров, получивших название «Параметры Смолла-Тиле»: Fs, Re, Le, Qms, Qes, Qts, Vas, Cms, Vd, BL, Mms, Rms, EBP, Xmax/Xmech, Sd, Zmax, рабочий диапазон воспроизводимых частот (Usable Freq. Range), номинальная мощность (Power Handling), чувствительность (Sensitivity).

    Fs

    Re

    Этот параметр описывает сопротивление громкоговорителя по постоянному току, измеренное с помощью омметра. Его часто называют DCR. Значение этого сопротивления почти всегда меньше номинального сопротивления громкоговорителя, что беспокоит многих покупателей, так как они боятся, что усилитель будет перегружен. Однако, благодаря тому что индуктивность громкоговорителя растет с увеличением частоты, маловероятно, что постоянное сопротивление будет влиять на нагрузку.

    Le

    Этот параметр соответствует индуктивности звуковой катушки, измеренной в мГн (миллигенри). По установленному стандарту измерение индуктивности производится на частоте 1 кГц. При повышении частоты будет происходить рост полного сопротивления выше значения Re, так как звуковая катушка работает как индуктор. В результате этого полное сопротивление (Impedance) громкоговорителя не является постоянной величиной. Оно может быть представлено в виде кривой, которая меняется с изменением частоты входного сигнала. Максимальное значение полного сопротивления (Zmax) имеет место на резонансной частоте (Fs).

    Q-параметры

    Vas/Cms

    Параметр Vas говорит о том, каким должен быть объем воздуха, который при сжатии до объема в один кубический метр оказывает такое же сопротивление, что и система подвеса (эквивалентный объем). Коэффициент гибкости системы подвеса для данного громкоговорителя обозначается как Cms. Vas является одним из наиболее сложных для измерения параметров, так как давление воздуха изменяется в соответствии с влажностью и температурой и, таким образом, требует для измерения очень высокотехнологичную лабораторию. Cms измеряется в метрах на ньютон (м/Н) и представляет собой силу, с которой механическая система подвеса сопротивляется движению диффузора. Другими словами, Cms соответствует измерению жесткости механического подвеса громкоговорителя. Соотношение Cms и Q-параметров можно сравнить с выбором между повышенным комфортом и улучшенными ходовыми качествами, который делают производители автомобилей. Если рассматривать пики и минимумы аудиосигнала как неровности автомобильной дороги, то система подвеса громкоговорителя аналогична рессорам автомобиля - в идеале она должна выдерживать очень быструю езду по дороге, заваленной крупными валунами.

    Vd

    Этот параметр обозначает максимальный объем воздуха, который может быть вытолкнут диффузором (Peak Diaphragm Displacement Volume). Он вычисляется путем умножения Xmax (максимальной длины той части звуковой катушки, которая выходит за пределы магнитного зазора) на Sd (площадь рабочей поверхности диффузора). Vd измеряется в кубических сантиметрах. Субвуферы обычно характеризуются самыми высокими значениями Vd.

    BL

    Выражаемый в тесла на метр, этот параметр характеризует движущую силу громкоговорителя. Другими словами, BL дает понять, насколько большую массу может «поднять» громкоговоритель. Измеряется этот параметр следующим образом: на диффузор воздействует определенная сила, направленная внутрь громкоговорителя, и при этом измеряется сила тока, нужная для того, чтобы противодействовать приложенной силе - масса в граммах делится на силу тока в амперах. Высокое значение параметра BL говорит об очень большой силе громкоговорителя.

    Mms

    Этот параметр является объединением веса диффузора в сборе и массы воздушного потока, сдвигаемого диффузором громкоговорителя во время работы. Вес диффузора в сборе равен сумме веса самого диффузора, центрирующей шайбы и звуковой катушки. При вычислении массы воздушного потока, смещаемого диффузором, используется объем воздуха, соответствующий параметру Vd.

    Rms

    Этот параметр описывает потери на механическое сопротивление системы подвеса громкоговорителя. Он представляет собой измерение абсорбирующих качеств подвеса громкоговорителя и измеряется в Н і с/м.

    EBP

    Этот параметр равен Fs, деленному на Qes. Он используется во многих формулах, связанных с конструированием кабинетов для акустических систем, и в частности, чтобы определить, какой кабинет лучше выбрать для данного громкоговорителя - закрытый или фазионверторной конструкции. Когда значение EBP приближается к 100, это означает, что такой громкоговоритель лучше всего подойдет для работы в фазоинверторном корпусе. В случае, если EBP близок к 50, данный громкоговоритель лучше установить в закрытый корпус. Однако это правило является лишь отправной точкой при создании акустической системы и допускает исключения.

    Xmax/Xmech

    Параметр определяет максимальное линейное отклонение. Выходной сигнал громкоговорителя становится нелинейным, когда звуковая катушка начинает выходить из магнитного зазора. Хотя и система подвеса может создавать нелинейность в выходном сигнале, искажения начинают значительно увеличиваться в тот момент, когда число витков звуковой катушки в магнитном зазоре начинает уменьшаться. Для определения Xmax нужно вычислить длину части звуковой катушки, вышедшей за пределы верхнего среза магнита, и разделить ее пополам. Этот параметр используется для определения максимального звукового давления (SPL), которое может обеспечить громкоговоритель, сохраняя при этом линейность сигнала, то есть нормированное значение КНИ.
    При определении Xmech проводятся измерения длины хода звуковой катушки до возникновения одной из следующих ситуаций: либо разрушается центрирующая шайба, либо звуковая катушка упирается в предохраняющую заднюю крышку, либо звуковая катушка выходит из магнитного зазора, либо начинают играть роль другие физические ограничения диффузора. Наименьшая из полученных длин хода катушки делится пополам и полученное значение принимается за максимальное механическое смещение диффузора.

    Sd

    Этот параметр соответствует площади рабочей поверхности диффузора. Измеряется в см2.

    Zmax

    Этот параметр соответствует полному сопротивлению громкоговорителя на резонансной частоте.

    Рабочий диапазон воспроизводимых частот (Usable frequency range)

    Производители используют разные способы для измерения рабочего диапазона частот. Многие методы считаются приемлемыми, однако они приводят к разным результатам. По мере повышения частоты внеосевое излучение громкоговорителя уменьшается пропорционально диаметру. В определенной точке оно становится остронаправленным. В таблице показана зависимость частоты, на которой имеет место этот эффект, от размера громкоговорителя.

    File:///C:/Documents%20and%20Settings/artemk01klg/Desktop/1.jpg

    Номинальная мощность (Power handling)

    Это очень важный параметр при выборе громкоговорителя. Необходимо точно знать, что излучатель выдержит мощность подводимого к нему сигнала. Поэтому нужно подобрать такой громкоговоритель, который сможет с запасом выдержать подводимую к нему мощность. Определяющим критерием того, какую мощность будет иметь громкоговоритель, является его способность отводить тепло. Основными конструктивными особенностями, влияющими на эффективный отвод тепла, являются размер звуковой катушки, размер магнита, вентиляция конструкции, а также высокотехнологичные современные материалы, использованные в конструкции звуковой катушки. Большие размеры звуковой катушки и магнита обеспечивают более эффективное рассеивание тепла, а вентиляция обеспечивает охлаждение конструкции.
    При вычислении мощности громкоговорителя помимо способности выдерживать нагрев важны также механические свойства громкоговорителя. Ведь устройство может выдерживать нагрев, возникающий при подведении мощности в 1 кВт, но еще до достижения этого значения оно выйдет из строя из-за конструктивных повреждений: звуковая катушка будет упираться в заднюю стенку или звуковая катушка выйдет из магнитного зазора, диффузор деформируется и т. д. Наиболее часто подобные поломки случаются при воспроизведении слишком мощного НЧ-сигнала на большой громкости. Чтобы избежать поломок, необходимо знать реальный диапазон воспроизводимых частот, параметр Xmech, а также номинальную мощность.

    Чувствительность (Sensitivity)

    Этот параметр является одним из важнейших во всей спецификации громкоговорителя. Он позволяет понять, насколько эффективно и с какой громкостью аппарат будет воспроизводить звук при подведении сигнала той или иной мощности. К сожалению, производители громкоговорителей используют разные методы для вычисления этого параметра - единого установленного не существует. При определении чувствительности измеряют уровень звукового давления на расстоянии одного метра при подведении к громкоговорителю мощности 1 Вт. Проблема состоит в том, что иногда расстояние в 1 м рассчитывается от пылезащитного колпачка, а иногда от подвеса громкоговорителя. Из-за этого определить чувствительность громкоговорителей бывает довольно сложно.

    Взято с

  • Для начала расставим все точки над "i" и разберёмся в терминологии.

    Электродинамический громкоговоритель, динамический громкоговоритель, динамик, динамическая головка прямого излучения – это разнообразные названия одного и того же прибора служащего для преобразования электрических колебаний звуковой частоты в колебания воздуха, которые и воспринимаются нами как звук.

    Звуковые динамики или по-другому динамические головки прямого излучения вы не раз видели. Они активно применяются в бытовой электронике. Именно громкоговоритель преобразует электрический сигнал на выходе усилителя звуковой частоты в слышимый звук.

    Стоит отметить, что КПД (коэффициент полезного действия) звукового динамика очень низкий и составляет около 2 – 3%. Это, конечно, огромный минус, но до сих пор ничего лучше не придумали. Хотя стоит отметить, что кроме электродинамического громкоговорителя существуют и другие приборы для преобразования электрических колебаний звуковой частоты в акустические колебания. Это, например, громкоговорители электростатического, пьезоэлектрического, электромагнитного типа, но широкое распространение и применение в электронике получили громкоговорители электродинамического типа.

    Как устроен динамик?

    Чтобы понять, как работает электродинамический громкоговоритель, обратимся к рисунку.

    Динамик состоит из магнитной системы – она расположена с тыльной стороны. В её состав входит кольцевой магнит . Он изготавливается из специальных магнитных сплавов или же магнитной керамики. Магнитная керамика – это особым образом спрессованные и «спечённые» порошки, в составе которых присутствуют ферромагнитные вещества – ферриты. Также в магнитную систему входят стальные фланцы и стальной цилиндр, который называют керном . Фланцы, керн и кольцевой магнит формируют магнитную цепь.

    Между керном и стальным фланцем имеется зазор, в котором образуется магнитное поле. В зазор, который очень мал, помещается катушка. Катушка представляет собой жёсткий цилиндрический каркас, на который намотан тонкий медный провод. Эту катушку ещё называют звуковой катушкой . Каркас звуковой катушки соединяется с диффузором – он то и «толкает» воздух, создавая сжатия и разряжения окружающего воздуха – акустические волны.

    Диффузор может выполняться из разных материалов, но чаще его делают из спрессованной или отлитой бумажной массы. Технологии не стоят на месте и в ходу можно встретить диффузоры из пластмассы, бумаги с металлизированным покрытием и других материалов.

    Чтобы звуковая катушка не задевала за стенки керна и фланец постоянного магнита её устанавливают точно в середине магнитного зазора с помощью центрирующей шайбы . Центрирующая шайба гофрирована. Именно благодаря этому звуковая катушка может свободно двигаться в зазоре и при этом не касаться стенок керна.

    Диффузор укреплён на металлическом корпусе – корзине . Края диффузора гофрированы, что позволяет ему свободно колебаться. Гофрированные края диффузора формируют так называемый верхний подвес , а нижний подвес – это центрирующая шайба.

    Тонкие провода от звуковой катушки выводятся на внешнюю сторону диффузора и крепятся заклёпками. А с внутренней стороны диффузора к заклёпкам крепится многожильный медный провод. Далее эти многожильные проводники припаиваются к лепесткам, которые закреплены на изолированной от металлического корпуса пластинке. За счёт контактных лепестков, к которым припаяны многожильные выводы звуковой катушки, динамик подключается к схеме.

    Как работает динамик?

    Если пропустить через звуковую катушку динамика переменный электрический ток, то магнитное поле катушки будет взаимодействовать с постоянным магнитным полем магнитной системы динамика. Это заставит звуковую катушку либо втягиваться внутрь зазора при одном направлении тока в катушке, либо выталкиваться из него при другом. Механические колебания звуковой катушки передаются диффузору, который начинает колебаться в такт с частотой переменного тока, создавая при этом акустические волны.

    Обозначение динамика на схеме.

    Условное графическое обозначение динамика имеет следующий вид.

    Рядом с обозначением пишутся буквы B или BA , а далее порядковый номер динамика в принципиальной схеме (1, 2, 3 и т.д.). Условное изображение динамика на схеме очень точно передаёт реальную конструкцию электродинамического громкоговорителя.

    Основные параметры звукового динамика.

    Основные параметры звукового динамика, на которые следует обращать внимание:

      Но кроме активного сопротивления звуковая катушка обладает ещё и реактивным сопротивлением. Реактивное сопротивление образуется потому, что звуковая катушка, это, по сути, обычная катушка индуктивности и её индуктивность оказывает сопротивление переменному току. Реактивное сопротивление зависит от частоты переменного тока.

      Активное и реактивное сопротивление звуковой катушки образует полное сопротивление звуковой катушки. Оно обозначается буквой Z (так называемый, импеданс ). Получается, что активное сопротивление катушки не меняется, а реактивное сопротивление меняется в зависимости от частоты тока. Чтобы внести порядок реактивное сопротивление звуковой катушки динамика измеряют на фиксированной частоте 1000 Гц и прибавляют к этой величине активное сопротивление катушки.

      В итоге получается параметр, который и называется номинальное (или полное) электрическое сопротивление звуковой катушки. Для большинства динамических головок эта величина составляет 2, 4, 6, 8 Ом. Также встречаются динамики с полным сопротивлением 16 Ом. На корпусе импортных динамиков, как правило, указывается эта величина, например, вот так – или 8 Ohm .

      Стоит отметить тот факт, что полное сопротивление катушки где-то на 10 – 20% больше активного. Поэтому определить его можно достаточно просто. Нужно всего лишь измерить активное сопротивление звуковой катушки омметром и увеличить полученную величину на 10 – 20%. В большинстве случаев можно вообще учитывать только чисто активное сопротивление.

      Номинальное электрическое сопротивление звуковой катушки является одним из важных параметров, так как его необходимо учитывать при согласовании усилителя и нагрузки (динамика).

      Диапазон частот – это полоса звуковых частот, которые способен воспроизвести динамик. Измеряется в герцах (Гц). Напомним, что человеческое ухо воспринимает частоты в диапазоне 20 Гц – 20 кГц. И, это только очень хорошее ухо:).

      Никакой динамик не способен точно воспроизвести весь слышимый частотный диапазон. Качество звуковоспроизведения будет всё-равно отличаться от того, что требуется.

      Поэтому слышимый диапазон звуковых частот условно разделили на 3 части: низкочастотную (НЧ ), среднечастотную (СЧ ) и высокочастотную (ВЧ ). Так, например, НЧ-динамики лучше всего воспроизводят низкие частоты – басы, а высокочастотные – «писк» и «звон» – их поэтому и называют пищалками. Также, есть и широкополосные динамики. Они воспроизводят практически весь звуковой диапазон, но качество воспроизведения у них среднее. Выигрываем в одном – перекрываем весь диапазон частот, проигрываем в другом – в качестве. Поэтому широкополосные динамики встраивают в радиоприёмники, телевизоры и прочие устройства, где порой не требуется получить высококачественный звук, а нужна лишь чёткая передача голоса и речи.

      Для качественного воспроизведения звука НЧ, СЧ и ВЧ-динамики объединяются в едином корпусе, снабжаются частотными фильтрами. Это акустические системы. Так как каждый из динамиков воспроизводит только свою часть звукового диапазона, то суммарная работа всех динамиков значительно увеличивает качество звука.

      Как правило, низкочастотные динамики рассчитаны на воспроизведение частот от 25 Гц до 5000 Гц. НЧ-динамики обычно имеют диффузор большого диаметра и массивную магнитную систему.

      Динамики СЧ рассчитаны на воспроизведение полосы частот от 200 Гц до 7000 Гц. Габариты их чуть меньше НЧ-динамиков (зависит от мощности).

      Высокочастотные динамики прекрасно воспроизводят частоты от 2000 Гц до 20000 Гц и выше, вплоть до 25 кГц. Диаметр диффузора у таких динамиков, как правило, небольшой, хотя магнитная система может быть достаточно габаритная.

      Номинальная мощность (Вт) – это электрическая мощность тока звуковой частоты, которую можно подвести к динамику без угрозы его порчи или повреждения. Измеряется в ваттах (Вт ) и милливаттах (мВт ). Напомним, что 1 Вт = 1000 мВт. Подробнее о сокращённой записи числовых величин можно прочесть .

      Величина мощности, на которую рассчитан конкретный динамик, может быть указана на его корпусе. Например, вот так – 1W (1 Вт).

      Это значит, что такой динамик можно легко использовать совместно с усилителем, выходная мощность которого не превышает 0,5 – 1 Вт. Конечно, лучше выбирать динамик с некоторым запасом по мощности. На фото также видно, что указано номинальное электрическое сопротивление – (4 Ом).

      Если подать на динамик мощность большую той, на которую он рассчитан, то он будет работать с перегрузкой, начнёт «хрипеть», искажать звук и вскоре выйдет из строя.

      Вспомним, что КПД динамика составляет около 2 – 3%. А это значит, что если к динамику подвести электрическую мощность в 10 Вт, то в звуковые волны он преобразует лишь 0,2 – 0,3 Вт. Довольно немного, правда? Но, человеческое ухо устроено весьма изощрённо, и способно услышать звук, если излучатель воспроизводит акустическую мощность около 1 – 3 мВт на расстоянии от него в несколько метров. При этом к излучателю – в данном случае динамику – нужно подвести электрическую мощность в 50 – 100 мВт. Поэтому, не всё так плохо и для комфортного озвучивания небольшой комнаты вполне достаточно подвести к динамику 1 – 3 Вт электрической мощности.

    Это всего лишь три основных параметра динамика. Кроме них ещё есть такие, как уровень чувствительности, частота резонанса, амплитудно-частотная характеристика (АЧХ), добротность и др.