18. Реакция линейных цепей на единичные функции. Переходная и импульсная характеристики цепи, их связь.
Единичная ступенчатая функция (функция включения) 1 (t) определяется следующим образом:
График функции 1 (t) показан на рис. 2.1.
Функция 1 (t) равна нулю при всех отрицательных значениях аргумента и единице при t ³ 0 . Введем в рассмотрение также смещенную единичную ступенчатую функцию
Такое воздействие включается в момент времени t = t ..
Напряжение в виде единичной ступенчатой функции на входе цепи будет при подключении источника постоянного напряжения U 0 =1 В при t = 0 с помощью идеального ключа (рис. 2.3).
Единичная импульсная функция (d - функция, функция Дирака) определяется как производная от единичной ступенчатой функции. Поскольку в момент времени t = 0 функция 1 (t ) претерпевает разрыв, то ее производная не существует (обращается в бесконечность). Таким образом, единичная импульсная функция
Это особая функция или математическая абстракция, но ее широко используют при анализе электрических и других физических объектов. Подобного рода функции рассматриваются в математической теории обобщенных функций.
Воздействие в виде единичной импульсной функции можно рассматривать как ударное воздействие (достаточно большая амплитуда и бесконечно малое время воздействия). Вводится также единичная импульсная функция, смещенная на время t = t
Единичную импульсную функцию принято графически изображать в виде вертикальной стрелки при t = 0, а смещенную при - t = t (рис. 2.4).
Если взять интеграл от единичной импульсной функции, т.е. определить площадь, ограниченную ею, то получим следующий результат:
Рис.
2.4.
Очевидно, что интервал интегрирования может быть любым, лишь бы туда попала точка t = 0. Интеграл от смещенной единичной импульсной функции d (t-t ) также равен 1 (если в пределы интегрирования попадает точка t = t). Если взять интеграл от единичной импульсной функции умноженной на некоторый коэффициент А 0 , то очевидно результат интегрирования будет равен этому коэффициенту. Следовательно, коэффициент А 0 перед d (t ) определяет площадь, ограниченную функцией А 0 d (t ).
Для физической интерпретации d - функции целесообразно ее рассматривать как предел, к которому стремиться некоторая последовательность обычных функции, например
Переходная и импульсная характеристики
Переходной характеристикой h(t) называется реакция цепи на воздействие в виде единичной ступенчатой функции 1 (t ). Импульсной характеристикой g(t) называется реакция цепи на воздействие в виде единичной импульсной функции d (t ). Обе характеристики определяются при нулевых начальных условиях.
Переходная и импульсная функции характеризуют цепь в переходном режиме, так как они являются реакциями на скачкообразные, т.е. довольно тяжелые для любой системы воздействия. Кроме того, как будет показано ниже с помощью переходной и импульсной характеристик может быть определена реакция цепи на произвольное воздействие. Переходная и импульсная характеристики связаны между собой также как связаны между собой соответствующие воздействия. Единичная импульсная функция является производной от единичной ступенчатой функции (см. (2.2)), поэтому импульсная характеристика является производной от переходной характеристики и при h (0) = 0 . (2.3)
Это утверждение следует из общих свойств линейных систем, которые описываются линейными дифференциальными уравнениями, в частности, если к линейной цепи с нулевыми начальными условиями вместо воздействия прикладывается его производная, то реакция будет равна производной от исходной реакции.
Из двух рассматриваемых характеристик наиболее просто определяется переходная, так как она может быть вычислена по реакции цепи на включение на входе источника постоянного напряжения или тока. Если такая реакция известна, то для получения h(t) достаточно разделить ее на амплитуду входного постоянного воздействия. Отсюда следует, что переходная (также как и импульсная) характеристика может иметь размерность сопротивления, проводимости или быть безразмерной величиной в зависимости от размерности воздействия и реакции.
Пример . Определить переходную h(t) и импульсную g (t ) характеристики последовательной RC-цепи.
Воздействием является входное напряжение u 1 (t ), а реакцией - напряжение на емкости u 2 (t ). Согласно определению переходной характеристики ее следует определять как напряжение на выходе, когда на вход цепи подключается источник постоянного напряжения U 0
Такая
задача была решена в разделе 1.6, где
получено u
2
(t
)
= u
C
(t
)
=
Таким
образом,h(t)
= u
2
(t
)
/ U
0
=
Импульсную
характеристику определим по (2.3)
.
Расчет отклика цепи во многих случаях может быть упрощен, если входной сигнал представить суммой элементарных воздействий в виде прямоугольных импульсов малой длительности. Для этого сначала рассмотрим связь между функциями и, изображенными на рис.5.8а,6, которые можно записать в виде:
Вторая функция является единичным импульсом, который рассмотрен нами в п.2.4. Как видно, функция является производной от функции, т.е. . Осуществим в этих функциях предельный переход при. При этом функция перейдет в единичную функцию, а функция в функцию. Тогда в силу равенства следует, что единичный импульс, или - функция является производной единичной функции.
Для линейной цепи отсюда заключаем, что ее отклик на единичный импульс, называемый импульсной характеристикой цепи, является производной переходной характеристики цепи, т.е. или


Размерность импульсной характеристики равна размерности переходной характеристики, деленной на время.
Нахождение импульсной характеристики в большинстве случаев проще, чем нахождение переходной характеристики. Действительно, как показано в п. 2.4, спектральная функция единичного импульса, а поэтому для импульсной характеристики с помощью интеграла Фурье получаем выражение
Из этого выражения следует, что спектральная функция характеристики равна комплексному коэффициенту передачи цепи, т.е. или, пользуясь прямым преобразованием Фурье, запишем:
To есть импульсная характеристика цепи так же, как и переходная характеристика, определяется через коэффициент передачи, но для импульсной характеристики в большинстве случаев подынтегральное выражение в интеграле Фурье оказывается проще.

В качестве примера применим соотношение (5.14) для определения спектра импульсной характеристики интегрирующей цепи, переходная характеристика которой. Для импульсной характеристики получаем

Пользуясь здесь выражением (5.14), необходимо учесть, что переходная характеристика при тождественно равна нулю, и поэтому нижний предел в интеграле выражения (5.14) будет нуль. Тогда спектральная функция импульсной характеристики равна

т.е. получили коэффициент передачи интегрирующей цепи, соответствующий ранее полученному выражению (3.16).
Зная импульсную характеристику, можно найти отклик цепи на воздействие сигнала любой формы, либо предварительно найдя по соотношению (5.12) переходную характеристику, а затем воспользовавшись одним из выражений интеграла Дюамеля, либо непосредственно через функцию. В последнем случае входную функцию, т.е. воздействующий сигнал необходимо представить в виде суммы импульсов, как показано на рис. 5.9.

Такое представление функции будет точнее, если, т.е. если она представлена суммой бесконечно большого числа бесконечно малых по длительности импульсов, являющихся здесь элементарными воздействиями. Если бы элементарным воздействием был единичный импульс, площадь которого равна единице, то откликом цепи на такой импульс, появляющийся в момент времени, была бы импульсная характеристика. В рассматриваемом случае элементарный импульс имеет величину, равную мгновенному значению функции в момент и длительность, равную, т.е. его площадь равна. Тогда откликом на элементарное воздействие будет величина. Отклик цепи на воздействие, заданное функцией, будет суммой откликов на все элементарные воздействия, временное положение которых соответствует интервалу от 0 до, т.е.

Это выражение, являющееся еще одним видом записи интеграла Дюамеля, называется также сверткой функций. Оно по виду совпадает с оригиналом свертки изображений двух функций в формуле (4.21).
Импульсную характеристику цепи можно получить с помощью эксперимента, наблюдая отклик цепи (выходное напряжение) на электронном осциллографе. На вход цепи необходимо подать импульс весьма малой длительности. Для примера рассмотрим импульсную характеристику последовательного колебательного контура, считая, что выходное напряжение снимается с емкости С. Выше в п.1.6 мы рассмотрели переходный процесс при включении постоянного напряжения на такой контур. Если величина поданного напряжения равна единице, то напряжение на емкости, являющееся переходной характеристикой цепи равно, согласно (1.33),
Эта переходная характеристика представлена на рис.5.10а. Тогда импульсная характеристика контура
Считая добротность контура большой, полагаем и тогда первым членом можно пренебречь:
Эта характеристика представлена на рис.5.10б. Она соответствует осциллограмме свободных колебаний в контуре, рассмотренных нами в п.1.5.

Таким образом, для того чтобы экспериментально наблюдать импульсную характеристику контура, необходимо на вход контура подать импульс малой длительности, т.е. (как было пояснено в п.2.4) чтобы его длительность удовлетворяла условию.
3. Импульсные характеристики электрических цепей
Импульсной характеристикой цепи называют отношение реакции цепи на импульсное воздействие к площади этого воздействия при нулевых начальных условиях.
По определению ,
где – реакция цепи на импульсное воздействие;
– площадь импульса воздействия.
По известной импульсной характеристике цепи можно найти реакцию цепи на заданное воздействие: .
В качестве функции воздействия часто используется единичное импульсное воздействие называемое также дельта-функцией или функцией Дирака.
Дельта-функция – это функция всюду равная нулю, кроме , а площадь ее равна единице ():
.
К понятию дельта-функция можно прийти, рассматривая предел прямоугольного импульса высотой и длительностью , когда (рис. 3):
Установим связь между передаточной функцией цепи и ее импульсной характеристикой, для чего используем операторный метод.
По определению:
Если воздействие (оригинал) рассматривать для наиболее общего случая в виде произведения площади импульса на дельта-функцию, т. е. в виде , то изображение этого воздействия согласно таблицы соответствий имеет вид:
.
Тогда с другой стороны, отношение преобразованной по Лапласу реакции цепи к величине площади импульса воздействия, представляет собой операторную импульсную характеристику цепи:
.
Следовательно, .
Для нахождения импульсной характеристики цепи необходимо применить обратное преобразование Лапласа:
, т.
е. фактически
.
Обобщая формулы, получим связь между операторной передаточной функцией цепи и операторными переходной и импульсной характеристиками цепи:
Таким образом, зная одну из характеристик цепи, можно определить любые другие.
Произведем тождественное преобразование равенства, прибавив к средней части .
Тогда будем иметь .
Поскольку
представляет собой изображение
производной переходной характеристики,
то исходное равенство можно переписать
в виде:
Переходя в область оригиналов, получаем формулу, позволяющую определить импульсную характеристику цепи по известной ее переходной характеристике:
Если , то .
Обратное соотношение между указанными характеристиками имеет вид:
.
По передаточной функции легко установить наличие в составе функции слагаемого .
Если степени числителя и знаменателя одинаковы, то рассматриваемое слагаемое будет присутствовать. Если же функция является правильной дробью, то этого слагаемого не будет.
Пример: определить импульсные характеристики для напряжений и в последовательной -цепи, показанной на рисунке 4.
Определим :
По таблице соответствий перейдем к оригиналу:
.
График этой функции показан на рисунке 5.
Рис. 5
Передаточная функция :
Согласно таблице соответствий имеем:
.
График полученной функции показан на рисунке 6.
Укажем, что такие же выражения можно было получить с помощью соотношений, устанавливающих связь между и.
Импульсная характеристика по физическому смыслу отражает собой процесс свободных колебаний и по этой причине можно утверждать, что в реальных цепях всегда должно выполняться условие:
4. Интегралы свертки (наложения)
Рассмотрим порядок определения реакции линейной электрической цепи на сложное воздействие, если известна импульсная характеристика этой цепи . Будем считать, что воздействие представляет собой кусочно-непрерывную функцию , показанную на рисунке 7.
Пусть требуется найти значение реакции в некоторый момент времени . Решая эту задачу, представим воздействие в виде суммы прямоугольных импульсов бесконечно малой длительности, один из которых, соответствующий моменту времени , показан на рисунке 7. Этот импульс характеризуется длительностью и высотой .
Из ранее рассмотренного материала известно, что реакцию цепи на короткий импульс можно считать равной произведению импульсной характеристики цепи на площадь импульсного воздействия. Следовательно, бесконечно малая составляющая реакции, обусловленная этим импульсным воздействием, в момент времени будет равной:
поскольку площадь импульса равна , а от момента его приложения до момента наблюдения проходит время .
Используя принцип наложения, полную реакцию цепи можно определить как сумму бесконечно большого числа бесконечно малых составляющих , вызванных последовательностью бесконечно малых по площади импульсных воздействий, предшествующих моменту времени .
Таким образом:
.
Эта формула верна для любых значений , поэтому обычно переменную обозначают просто . Тогда:
.
Полученное соотношение называют интегралом свертки или интегралом наложения. Функцию, которая находится в результате вычисления интеграла свертки, называют сверткой и .
Можно найти другую форму интеграла свертки, если в полученном выражении для осуществить замену переменных:
.
Пример: найти напряжение на емкости последовательной -цепи (рис. 8), если на входе действует экспоненциальный импульс вида:
цепи
связан: с изменением энергетического состояния... (+0),. Uc(-0) = Uc(+0). 3. Переходная
характеристика
электрической
цепи
это: Отклик на единичное ступенчатое...
Исследование цепи второго порядка. Поиск входной и предаточной характеристики
Курсовая работа >> Коммуникации и связь3. Переходная и импульсная характеристики цепи Лаплас образ переходной характеристики имеет вид. Для получения переходной характеристики во... А., Золотницкий В. М., Чернышев Э. П. Основы теории электрических цепей .-СПб.:Лань, 2004. 2. Дьяконов В. П. MATLAB ...
Основные положения теории переходных процессов
Реферат >> ФизикаЛапласа; – временной, использующий переходные и импульсные характеристики ; – частотный, базирующийся на... классического метода анализа переходных колебаний в электрических цепях Переходные процессы в электрических цепях описываются уравнениями, ...
Замечательная особенность линейных систем - справедливость принципа суперпозиции - открывает прямой путь к систематическому решению задач о прохождении разнообразных сигналов через такие системы. Способ динамического представления (см. гл. 1) позволяет представлять сигналы в виде сумм элементарных импульсов. Если удастся тем или иным способом иайти реакцию на выходе, возникающую под воздействием элементарного импульса на входе, то окончательным этапом решения задачи явится суммирование таких реакций.
Намеченный путь анализа основан на временном представлении свойств сигналов и систем. В равной мере применим, а порой и гораздо более удобен анализ в частотной области, когда сигналы задаются рядами или интегралами Фурье. Свойства систем при этом описываются их частотными характеристиками, которые указывают закон преобразования элементарных гармонических сигналов.
Импульсная характеристика.
Пусть некоторая линейная стационарная система описывается оператором Т. Для простоты будем полагать, что входной и выходной сигналы одномерны. По определению, импульсной характеристикой системы называется функция являющаяся откликом системы на входной сигнал Это означает, что функция h(t) удовлетворяет уравнению
Поскольку система стационарна, аналогичное уравнение будет и в случае, если входное воздействие смещено во времени на производную величину :
Следует ясно представить себе, что импульсная характеристика, так же как и порождающая ее дельта-функция, есть результат разумной идеализации. С физической точки зрения импульсная характеристика приближенно отображает реакцию системы на входной импульсный сигнал произвольной формы с единичной площадью при условии, что длительность этого сигнала пренебрежимо мала по сравнению с характерным временным масштабом системы, например периодом ее собственных колебаний.
Интеграл Дюамеля.
Зная импульсную характеристику линейной стационарной системы, можно формально решить любую задачу о прохождении детерминированного сигнала через такую систему. Действительно, в гл. 1 было показано, что входной сигнал всегда допускает представление вида
Отвечающая ему выходная реакция
Теперь примем во внимание, что интеграл есть предельное значение суммы, поэтому линейный оператор Т на основании принципа суперпозиции может быть внесен под знак интеграла. Далее, оператор Т «действует» лишь на величины, зависящие от текущего времени t, но не от переменной интегрирования х. Поэтому из выражения (8.7) следует, что
или окончательно
Эта формула, имеющая фундаментальное значение в теории линейных систем, называется интегралом Дюамеля. Соотношение (8.8) свидетельствует о том, что выходной сигнал линейной стационарной системы представляет собой свертку двух функций - входного сигнала и импульсной характеристики системы. Очевидно, формула (8.8) может быть записана также в виде
Итак, если импульсная характеристика h(t) известна, то дальнейшие этапы решения сводятся к полностью формализованным операциям.
Пример 8.4. Некоторая линейная стационарная система, внутреннее устройство которой несущественно, имеет импульсную характеристику, представляющую собой прямоугольный видеоимпульс длительностью Т. Импульс возникает при t = 0 и обладает амплитудой
Определить выходную реакцию данной системы при подаче на вход ступенчатого сигнала
Применяя формулу интеграла Дюамеля (8.8), следует обратить внимание на то, что выходной сигнал будет выглядеть по-разному в зависимости от того, превышает или нет текущее значение длительность импульсной характеристики. При имеем
Если же то при функция обращается в нуль, поэтому
Найденная выходная реакция отображается кусочно-лннейным графиком.
Обобщение на многомерный случай.
До сих пор предполагалось, что как входной, так и выходной сигналы одномерны. В более общем случае системы с входами и выходами следует ввести парциальные импульсные характеристики каждая из которых отображает сигнал на выходе при подаче на вход дельта-функции.
Совокупность функций образует матрицу импульсных характеристик
Формула интеграла Дюамеля в многомерном случае приобретает вид
где - -мерный вектор; - -мерный вектор.
Условие физической реализуемости.
Каков бы ни был конкретный вид импульсной характеристики физически осуществимой системы, всегда должен выполняться важнейший принцип: выходной сигнал, отвечающий импульсному входному воздействию, не может возникнуть до момента появления импульса на входе.
Отсюда вытекает очень простое ограничение на вид допустимых импульсных характеристик:
Такому условию удовлетворяет, например, имупльсная характеристика системы, рассмотренной в примере 8.4.
Легко видеть, что для физически реализуемой системы верхний предел в формуле интеграла Дюамеля может быть заменен на текущее значение времени:
Формула (8.13) имеет ясный физический смысл: линейная стационарная система, выполняя обработку поступающего на вход сигнала, проводит операцию взвешенного суммирования всех его мгновенных значений, существовавших «в прошлом» при - Роль весовой функции выполняет при этом импульсная характеристика системы. Принципиально важно, что физически реализуемая система ни при каких обстоятельствах не способна оперировать «будущими» значениями входного сигнала.
Физически реализуемая система должна быть, кроме того, устойчивой. Это означает, что ее импульсная характеристика должна удовлетворять условию абсолютной интегрируемости
Переходная характеристика.
Пусть на входе линейной стационарной системы действует сигнал, изображаемый функцией Хевисайда .
Выходную реакцию
принято называть переходной характеристикой системы. Поскольку система стационарна, переходная характеристика инвариантна относительно временного сдвига:
Высказанные ранее соображения о физической реализуемости системы полностью переносятся на случай, когда система возбуждается не дельта-функцией, а единичным скачком. Поэтому переходная характеристика физически реализуемой системы отлична от нуля лишь при в то время как при t Между импульсной и переходной характеристиками имеется тесная связь. Действительно, так как то на основании (8.5)
Оператор дифференцирования и линейный стационарный оператор Т могут меняться местами, поэтому
Воспользовавшись формулой динамического представления (1.4) и поступая так же, как и при выводе соотношения (8.8), получаем еще одну форму интеграла Дюамеля:
Частотный коэффициент передачи.
При математическом исследовании систем особый интерес представляют такие входные сигналы, которые, будучи преобразованы системой, остаются неизменными по форме. Если имеется равенство
то является собственной функцией системного оператора Т, а число X, в общем случае комплексное, - его собственным значением.
Покажем, что комплексный сигнал при любом значении частоты есть собственная функция линейного стационарного оператора. Для этого воспользуемся интегралом Дюамеля вида (8.9) и вычислим
Отсюда видно, что собственным значением системного оператора является комплексное число
(8.21)
называемое частотным коэффициентом передачи системы.
Формула (8.21) устанавливает принципиально важный факт - частотный коэффициент передачи и импульсная характеристика линейной стационарной системы связаны между собой преобразованием Фурье. Поэтому всегда, зная функцию можно определить импульсную характеристику
Мы подошли к важнейшему положению теории линейных стационарных систем - любую такую систему можно рассматривать либо во временной области с помощью ее импульсной или переходной характеристик, либо в частотной области, задавая частотный коэффициент передачи. Оба подхода равноценны и выбор одного из них диктуется удобствами получения исходных данных о системе и простотой вычислений.
В заключение отметим, что частотные свойства линейной системы, имеющей входов и выходов, можно описать матрицей частотных коэффициентов передачи
Между матрицами существует закон связи, аналогичный тому, который задан формулами (8.21), (8.22).
Амплитудно-частотная и фазочастотная характеристики.
Функция имеет простую интерпретацию: если на вход системы поступает гармонический сигнал с известной частотой и комплексной амплитудой то комплексная амплитуда выходного сигнала
В соответствии с формулой (8.26) модуль частотного коэффициента передачи (АЧХ) есть четная, а фазовый угол (ФЧХ) - нечетная функция частоты.
Гораздо сложнее ответить на вопрос о том, каким должен быть частотный коэффициент передачи для того, чтобы выполнялись условия физической реализуемости (8.12) и (8.14). Приведем без доказательства окончательный результат, известный под названием критерия Пэли - Винера: частотный коэффициент передачи физически реализуемой системы должен быть таким, чтобы существовал интеграл
Рассмотрим конкретный пример, иллюстрирующий свойства частотного коэффициента передачи линейной системы.
Пример 8.5. Некоторая линейная стационарная система имеет свойства идеального ФНЧ, т. е. ее частотный коэффициент передачи задается системой равенств:
Да основании выражения (8.20) импульсная характеристика такого фильтра
Симметрия графика этой функции относительно точки t = 0 свидетельствует о нереализуемости идеального фильтра нижних частот. Впрочем, этот вывод непосредственно вытекает из критерия Пэли - Винера. Действительно, интеграл (8.27) расходится для любой АЧХ, которая обращается в нуль на некотором конечном отрезке оси частот.
Несмотря на нереализуемость идеального ФНЧ, эту модель с успехом используют для приближенного описания свойств частотных фильтров, полагая, что функция содержит фазовый множитель, линейно зависящий от частоты:
Как нетрудно проверить, здесь импульсная характеристика
Параметр равный по модулю коэффициенту наклона ФЧХ, определяет задержку во времени максимума функции h(t). Ясно, что данная модель тем точнее отображает свойства реализуемой системы, чем больше значение
Импульс является функцией без какой-либо поддержки времени. С дифференциальными уравнениями используется для получения естественного отклика системы. Естественным ее ответом является реакция на начальное состояние. Форсированный отклик системы - это ответ на вход, пренебрегая ее первичным формированием.
Поскольку импульсная функция не имеет какой-либо поддержки времени, можно описать любое начальное состояние, возникающее из соответствующей взвешенной величины, которая равна массе тела, произведенной на скорость. Любая произвольная входная переменная может быть описана как сумма взвешенных импульсов. В результате, для линейной системы описывается как сумма «естественных» ответов на состояния, представленные рассматриваемыми величинами. Это то, что объясняет интеграл.
Когда вычисляется импульсная характеристика системы, по существу, производится естественный отклик. Если исследуется сумма или интеграл свертки, в основном решается этот вход в ряд состояний, а затем изначально сформированный ответ на эти состояния. Практически для импульсной функции можно привести пример удара в боксе, который длится очень мало, и после этого не будет следующего. Математически он присутствует только в начальной точке реалистической системы, имеющей высокую (бесконечную) амплитуду в этом пункте, а затем постоянно гаснет.
Импульсная функция определяется следующим образом: F(X)=∞∞ x=0=00, где ответ представляет собой характеристику системы. Рассматриваемая функция на самом деле является областью прямоугольного импульса при x=0, ширина которого считается равной нулю. При x=0 высоты h и его ширины 1/h это фактическое начало. Теперь, если ширина становится незначительной, то есть почти стремится к нулю, это делает соответствующую высоту h величины, стремящейся к бесконечности. Это определяет функцию как бесконечно высокую.
Ответ конструкции
Импульсная характеристика следующая: всякий раз, когда системе (блоку) или процессору присваивается входной сигнал, он изменяет или обрабатывает его, чтобы дать желаемое выходное предупреждение в зависимости от функции передачи. Отклик системы помогает определить основные положения, конструкцию и реакцию для любого звука. Дельта-функция является обобщенной, которая может быть определена как предел класса указанных последовательностей. Если принимать импульсного сигнала, то разумеется, что оно является спектром постоянного тока в частотной области. Это означает, что все гармоники (в диапазоне от частоты до +бесконечности) способствуют рассматриваемому сигналу. Спектр частотной характеристики указывает, что эта система обеспечивает такой порядок усиления или ослабления этой частоты или подавляет эти колеблющиеся составляющие. Фазовый говорит о сдвиге, предоставляемом для разных гармоник частоты.
Таким образом, импульсные характеристики сигнала указывают на то, что он содержит в себе весь диапазон частот, поэтому используется для тестирования системы. Потому что, если применять какой-либо другой метод оповещения, то у него не будет всех необходимых сконструированных деталей, следовательно, реакция останется неизвестной.
Реакция устройств на внешние факторы
При обработке оповещения импульсная характеристика представляет собой ее выход, когда он представлен кратким входным сигналом, называемым импульсом. В более общем плане является реакцией любой динамической системы в ответ на некоторые внешние изменения. В обоих случаях импульсная характеристика описывает функцию времени (или, возможно, как некоторой другой независимой переменной, которая параметризирует динамическое поведение). Она имеет бесконечную амплитуду только при t=0 и нулевую всюду, и, как следует из названия, ее импульс i, e действует в течение короткого промежутка.
При применении любая система имеет функцию передачи от входа к выходу, которая описывает ее как фильтр, влияющий на фазу и указанную выше величину в частотном диапазоне. Эта частотная характеристика с использованием импульсных методов, измеренная или рассчитанная в цифровом виде. Во всех случаях динамическая система и ее характеристика могут быть реальными физическими объектами или математическими уравнениями, описывающими такие элементы.
Математическое описание импульсов
Поскольку рассматриваемая функция содержит все частоты, критерии и описание определяют отклик линейной временной инвариантной конструкции для всех величин. Математически как описывается импульс, зависит от того, смоделирована ли система дискретным или непрерывным временем. Его можно моделировать как дельта-функцию Дирака для систем непрерывного времени или как величину Кронекера для конструкции с прерывным действием. Первая представляет собой предельный случай импульса, который был очень коротким по времени, сохраняя свою площадь или интеграл (тем самым давая бесконечно высокий пик). Хотя это невозможно в любой реальной системе, это полезная идеализация. В теории анализа Фурье такой импульс содержит равные части всех возможных частот возбуждения, что делает его удобным тестовым зондом.
Любая система в большом классе, известная как линейная, инвариантная по времени (LTI), полностью описывается импульсной характеристикой. То есть для любого входа выход можно рассчитать в терминах ввода и непосредственной концепции рассматриваемой величины. Импульсное описание линейного преобразования представляет собой образ дельта-функции Дирака при преобразовании, аналогичный фундаментальному решению дифференциального оператора с частными производными.
Особенности импульсных конструкций
Обычно проще анализировать системы, используя передаточные импульсные характеристики, а не ответы. Рассматриваемая величина представляет собой преобразование Лапласа. Усовершенствование ученым выходного сигнала системы может быть определено умножением передаточной функции на это действие ввода в комплексной плоскости, также известной как частотная область. Обратное преобразование Лапласа этого результата даст выход во временной области.
Для определения выхода непосредственно во временной области требуется свертка входа с импульсной характеристикой. Когда передаточная функция и преобразование Лапласа ввода известны. Математическая операция, применяющаяся на двух элементах и реализующая третий, может быть более сложной. Некоторые предпочитают альтернативу - умножение двух функций в частотной области.
Реальное применение импульсной характеристики
В практических системах невозможно создать идеальный импульс для ввода данных для тестирования. Поэтому короткий сигнал иногда используется в качестве приближения величины. При условии, что импульс достаточно короткий, по сравнению с откликом, результат будет близок к истинному, теоретическому. Однако во многих системах вхождение с очень коротким сильным импульсом может привести конструкцию в нелинейный режим. Поэтому вместо этого она управляется псевдослучайной последовательностью. Таким образом, импульсная переходная характеристика рассчитывается из входных и выходных сигналов. Отклик, рассматриваемый как функция Грина, можно рассматривать как «влияние» - как точка входа влияет на выход.
Характеристики импульсных устройств
Колонки являются приложением, которое демонстрирует саму идею (была разработка тестирования импульсного отклика в 1970-х годах). Громкоговорители страдают от неточности фазы, дефекта, в отличие от других измеренных свойств, таких как частотная характеристика. Этот недоработанный критерий вызван (слегка) задержанными колебаниями/октавами, которые в основном являются результатом пассивных кросс-передач (особенно фильтров более высокого порядка). Но также вызваны резонансом, внутренним объемом или вибрированием панелей корпуса. Отклик - конечная импульсная характеристика. Его измерение обеспечило инструмент для использования в уменьшении резонансов за счет применения улучшенных материалов для конусов и корпусов, а также изменения кроссовера динамиков. Необходимость ограничить амплитуду для поддержания линейности системы привела к использованию входов, таких как псевдослучайные последовательности максимальной длины, и к помощи компьютерной обработки для получения остальных сведений и данных.
Электронное изменение
Анализ импульсного отклика является основным аспектом радиолокации, ультразвуковой визуализации и многих областей цифровой обработки сигналов. Интересным примером могут быть широкополосные интернет-соединения. DSL-услуги используют методы адаптивного выравнивания, чтобы помочь компенсировать искажения и помехи сигнала, введенные медными телефонными линиями, используемыми для доставки услуги. В их основе лежат устаревшие цепи, импульсная характеристика которых оставляет желать лучшего. На смену пришли модернизированные покрытия для использования Интернета, телевидения и других устройств. Эти усовершенствованные конструкции способны улучшать качество, особенно с учетом того, что современный мир - это сплошное интернет-соединение.
Системы контроля
В теории управления импульсная характеристика представляет собой отклик системы на вход дельта Дирака. Это полезно при анализе динамических конструкций. Преобразование Лапласа дельта-функции равно единице. Поэтому импульсная характеристика эквивалентна обратному преобразованию Лапласа передаточной функции системы и фильтру.
Акустические и звуковые приложения
Здесь импульсные ответы позволяют записывать звуковые характеристики местоположения, например, концертного зала. Доступны различные пакеты, содержащие оповещения от конкретных мест, от небольших комнат до крупных концертных залов. Эти импульсные отклики могут затем использоваться в приложениях реверберации свертки, чтобы позволить акустическим характеристикам конкретного местоположения применяться к целевому звуку. То есть по факту происходит анализ, разделение различных оповещений и акустики через фильтр. Импульсная характеристика в данном случае способна дать возможность выбора пользователю.
Финансовая составляющая
В современном макроэкономическом моделировании функции импульсного ответа используются для описания того, как она реагирует со временем на экзогенные величины, которые научные исследователи обычно называют потрясениями. И часто имитируются в контексте векторной авторегрессии. Импульсы, которые часто считаются экзогенными, с макроэкономической точки зрения включают изменения в государственных расходах, ставках налогов и других параметрах финансовой политики, изменения денежной базы или других параметров капитала и кредитной политики, перемены производительности или других технологических параметров; преобразование в предпочтениях, такие как степень нетерпения. Функции импульсного отклика описывают реакцию эндогенных макроэкономических переменных, таких как выход, потребление, инвестиции и занятость во время шока и в последующие моменты времени.
Конкретнее об импульсе
По существу дела, ток и импульсная характеристика взаимосвязаны. Потому что каждый сигнал может быть смоделирован как серия. Это происходит ввиду наличия определенных переменных и электричества или генератора. Если система является как линейной, так и временной, реакция прибора на каждый из откликов может быть вычислена с использованием рефлексов рассматриваемой величины.