Смотрим на мир глазами рака-богомола: ближний инфракрасный диапазон. Какие живые существа способны воспринимать ультрафиолетовый и инфракрасный свет Как увидеть инфракрасное излучение

Был вариант купить дешевую VGA разрешения цифровую камеру с видоискателем, но тогда это была бы еще одна вещь, чтобы носить с собой.
Недавно в аэропорту, я попытался выключить телевизор с громкой болтовней людей своим универсальным контроллером ТВ-Be-Gone, но устройство не сработало, чтобы выключить телевизор, поэтому я решил попытаться увидеть, работает он или нет. Я достал свой iPhone 4, открыл приложение камеры, направил камеру на ТВ-Be-Gone с ИК подсветкой, и нажал кнопку на ТВ-Be-Gone. Я не увидел свет от ИК светодиода в видоискателе iPhone автора.
Тогда мне пришло в голову попробовать фронтальную камеру FaceTim. Я нажал кнопку камеры переключателя на экране iPhone и направил на FaceTime камеру, по-прежнему мигающую ИК подсветку ТВ-Be-Gone, и наконец я смог увидеть свет, который выходил из ИК излучателя!
Следующие шаги будут повторять описанные выше действия, и покажут вам, как увидеть инфракрасный свет на вашем стандартном iPhone 4, и, возможно, других смартфонах и планшетах тоже.

Шаг 1. Попробуйте, используя заднюю панель камеры, увидеть свет от инфракрасного светодиода

На вашем iPhone, запустите приложение Камера, и наведите камеру на светодиодные излучатели ТВ-пульта дистанционного управления.
Когда вы смотрите на экран iPhone, нажмите несколько кнопок на пульте дистанционного управления.
Несмотря на то, что пульт дистанционного управления, вероятно излучает яркий инфракрасный луч, вы не можете видеть это вашими глазами, потому что ваши глаза не чувствительны к свету в частоте инфракрасного излучения (около 940 нм для пульта дистанционного управления).
Основная камера вашего iPhone не может видеть инфракрасный свет, потому что Apple, добавил фильтр на объектив, который блокирует инфракрасный свет, поэтому инфракрасные лучи не видны на экране.

Шаг 2. Теперь попробуйте с помощью фронтальной камеры FaceTime увидеть свет от инфракрасного светодиода

Теперь нажмите кнопку "переключатель камеры" - значок в верхнем правом углу камеры iPhone приложения таким образом, чтобы на экране отображался вид с FaceTime камеры, так что вы, вероятно, увидите себя на экране.
Теперь направьте камеру FaceTime на светодиодный LED вашего пульта дистанционного управления телевизора и нажмите кнопку на пульте дистанционного управления.
Ваш глаз не может видеть инфракрасный свет, но теперь вы будете видеть инфракрасный свет, который появляется в видоискателе, как яркий белый свет.
Оказывается, что FaceTime камера на iPhone 4 не имеет ИК фильтра! Ура!

Не знаю как вам, а мне всегда было интересно: как выглядел бы мир, если бы цветовые каналы RGB в глазу человека были чувствительны к другому диапазону длин волн? Порывшись по сусекам, я обнаружил инфракрасные фонарики (850 и 940нм), комплект ИК фильтров (680-1050нм), черно-белую цифровую камеру (без фильтров вообще), 3 объектива (4мм, 6мм и 50мм) расчитанные на фотография в ИК свете. Что-ж, попробуем посмотреть.

На тему ИК фотографии с удалением ИК фильтра на хабре уже писали - на этот раз у нас будет больше возможностей. Также фотографии с другими длинами волн в каналах RGB (чаще всего с захватом ИК области) - можно увидеть в постах с Марса и о космосе в целом.


Это фонарики с ИК диодами: 2 левых на 850нм, правый - на 940нм. Глаз видит слабое свечение на 840нм, правый - только в полной темноте. Для ИК камеры они ослепительны. Глаз похоже сохраняет микроскопическую чувствительность к ближнему ИК + излучение светодиода идет с меньшей интенсивностью и на более коротких (=более видимых) длинах волн. Естественно, с мощными ИК светодиодами нужно быть аккуратным - при везении можно незаметно получить ожег сетчатки (как и от ИК лазеров) - спасает лишь то, что глаз не может излучение в точку сфокусировать.

Черно-белая 5-и мегапиксельная noname USB камера - на сенсоре Aptina Mt9p031. Долго тряс китайцев на тему черно-белых камер - и один продавец наконец нашел то, что мне было нужно. В камере нет никаких фильтров вообще - можно видеть от 350нм до ~1050нм.

Объективы: этот на 4мм, еще есть на 6 и 50мм. На 4 и 6мм - рассчитанные на работу в ИК диапазоне - без этого для ИК диапазона без перефокусировки снимки получались бы не в фокусе (пример будет ниже, с обычным фотоаппаратом и ИК излучением 940нм). Оказалось, байонет C (и CS с отличающимся на 5мм рабочим отрезком) - достался нам еще от 16мм кинокамер начала века. Объективы до сих пор активно производятся - но уже для систем видеонаблюдения, в том числе и известными компаниями вроде Tamron (объектив на 4мм как раз от них: 13FM04IR).

Фильтры: нашел опять у китайцев комплект ИК фильтров от 680 до 1050нм. Однако тест на пропускание ИК излучения дал неожиданные результаты - это похоже не полосовые фильтры (как я себе это представлял), а похоже разная «плотность» окраски - что изменяет минимальную длину волны пропускаемого света. Фильтры после 850нм оказались очень плотными, и требуют длинных выдержек. IR-Cut фильтр - наоборот, пропускает только видимый свет, понадобится нам при съемке денег.

Фильтры в видимом свете:

Фильтры в ИК: красный и зеленый каналы - в свете 940нм фонарика, синий - 850нм. IR-Cut фильтр - отражает ИК излучение, потому у него такой веселенький цвет.

Приступим к съемке

Панорама днем в ИК: красный канал - с фильтром на 1050нм, зеленый - 850нм, синий - 760нм. Видим, что деревья особенно хорошо отражают именно самый ближний ИК. Цветные облака и цветные пятна на земле - получились из-за движения облаков между кадрами. Отдельные кадры совмещались (если мог быть случайный сдвиг камеры) и сшивались в 1 цветную картинку в CCDStack2 - программа для обработки астрономических фотографий, где цветные снимки часто делают из нескольких кадров с различными фильтрами.

Панорама ночью: видно отличие по цвету разных источников света: «энергоэффективные» - синие, видны только в самом ближнем ИК. Лампы накаливания - белые, светят во всем диапазоне.

Книжная полка: практически все обычные объекты практически бесцветны в ИК. Либо черные, либо белые. Лишь некоторые краски имеют выраженный «синий» (коротковолновый ИК - 760нм) оттенок. ЖК экран игры «Ну погоди!» - в ИК диапазоне ничего не показывает (хотя работает на отражение).

Сотовый телефон с AMOLED экраном: совершенно ничего не видно на нем в ИК, равно как и синего индикаторного светодиода на подставке. На заднем фоне - на ЖК экране также ничего не видно. Синяя краска на билете метро прозрачна в ИК - и видна антенна для RFID чипа внутри билета.

На 400 градусах паяльник и фен - довольно ярко светятся:

Звезды

Известно, что небо голубое из-за Рэлеевского рассеяния - соответственно в ИК диапазоне оно имеет намного мЕньшую яркость. Возможно ли увидеть звезды вечером или даже днем на фоне неба?

Фотография первой звезды вечером обычным фотоаппаратом:

ИК камерой без фильтра:

Еще один пример первой звезды на фоне города:

Деньги

Первое, что приходит на ум для проверки подлинности денег - это УФ излучение. Однако купюры имеют массу спец.элементов, проявляющихся в ИК диапазоне, в том числе и видимых глазом. Об этом на хабре уже кратко писали - теперь посмотрим сами:

1000 рублей с фильтрами 760, 850 и 1050нм: лишь отдельные элементы напечатаны краской, поглощающей ИК излучение:

5000 рублей:

5000 рублей без фильтров, но с освещением разными длинами волн:
красный = 940нм, зеленый - 850нм, синий - 625нм (=красный свет):

Однако инфракрасные хитрости денег на этом не заканчиваются. На купюрах есть антистоксовские метки - при освещении ИК светом 940нм они светятся в видимом диапазоне. Фотография обычным фотоаппаратом - как видим, ИК свет немного проходит через встроенный IR-Cut фильтр - но т.к. объектив не оптимизирован под ИК - изображение в фокус не попадает. Инфракрасный свет выглядит светло-сиреневым потому, что RGB фильтры Байера - прозрачны для ИК .

Теперь, если добавить IR-Cut фильтр - мы увидим только светящиеся антистоксовские метки. Элемент выше «5000» - светится ярче всего, его видно даже при не ярком комнатном освещении и подсветке 4Вт 940нм диодом/фонариком. В этом элементе также красный люминофор - светится несколько секунд после облучения белым светом (или ИК->зеленого от антистоксовского люминофора этой же метки).

Элемент чуть правее «5000» - люминофор, светящийся зеленым некоторое время после облучения белым светом (он ИК излучения не требует).

Резюме

Деньги в ИК диапазоне оказались крайне хитрыми, и проверять их в полевых условиях можно не только УФ, но и ИК 940нм фонариком. Результаты съемки неба в ИК - рождают надежду на любительскую астрофотографию без выезда далеко за пределы города.

В лазере фотон света, сталкиваясь с возбужденным атомом среды, стимулирует испускание другого фотона той же частоты. Вторичные фотоны в свою очередь вызывают испускание фотонов другими возбужденными атомами - в результате процесс излучения света идет лавинообразно. Но попробуем рассмотреть случай, когда активная среда лазера находится в докритическом состоянии, т. е. слишком разрежена, чтобы поддерживать лавинообразный процесс. В такой среде фотон может столкнуться с невозбуждеиным атомом, который, поглотив этот фотон, переходит в возбужденное состояние. Другой фотон, столкнувшись с этим возбужденным атомом, теперь может стимулировать эмиссию, и два фотона будут двигаться вместе, парой. В несколько более плотной среде и при чуть более интенсивной накачке эта пара фотонов может столкнуться с еще одним возбужденным атомом, результатом чего будет фотонный триплет. В целом, активную среду лазера покидает примерно столько же фотонов, сколько вошло в нее, однако выходящие фотоны образуют когерентные пары и тройки.

Такой «сгруппированный» свет обладает удивительными свойствами. Прежде всего он совершенно непривычен для глаза. Так, красный сгруппированный свет будет обычным образом отражаться от красных предметов. Но, поскольку каждая пара «красных» фотонов имеет в сумме энергию, равную энергии одного «синего» фотона, такой свет за счет двухфотонного поглощения станет возбуждать также рецепторы, чувствительные к синему цвету. Предмет, таким образом, будет одновременно выглядеть и красным, и синим, - наверное, переливчато-фиолетовым. Больше всего, впрочем, Дедала занимает инфракрасный сгруппированный свет. Все окружающие нас объекты в изобилии испускают длинноволновое инфракрасное излучение. Достаточно поэтому перед любым предметом поместить «группирователь фотонов» фирмы КОШМАР, который собирает фотоны в группы, суммарная энергия которых лежит в видимой области спектра, - и вот вам бесплатное освещение! Правда, в сгруппированном ИК-свете все предметы, скорее всего, будут иметь жуткий вид, так что лучше будет, если энергия группы фотонов придется на область ультрафиолета. Тогда, используя обычный люминофор, как в лампах дневного света, можно возбуждать его за счет многофотонного поглощения и получать видимый свет. Этот изящный прибор преобразует бесполезный инфракрасный фон в видимый свет - подобно тепловому насосу, перекачивающему тепло от тел с меньшей температурой к телам с более высокой температурой. Согласно законам термодинамики, эти устройства могут отбирать у окружающей среды гораздо больше энергии (тепла и света), чем необходимо для приведения их в действие .

New Scientist, June 26, 1980

Из записной книжки Дедала

Рассмотрим активную среду, в которой N 1 атомов находятся в основном состоянии и N 2 - в возбужденном состоянии с энергией Е. Рабочая частота равна в таком случае v = E/h, и если этой частоте соответствует плотность энергии ПЃv, то интенсивность возбуждения N 1 -> N 2 составит BN 1 ПЃv, где В - вероятность перехода. Аналогично интенсивность стимулированной эмиссии равна BN 2 ПЃv. Пусть в систему входит n фотонов. Для каждого из иих вероятность быть поглощенным при переходе атома из состояния 1 в состояние 2 пропорциональна BN 1 ПЃ; обозначим эту вероятность через KN 1 . Тогда число фотонов, поглощенных в системе, равно nKN 1 для малых KN 1 , а n(1 – KN 1) фотонов проходят через всю среду. Вероятность того, что каждый из этих фотонов стимулирует испускание фотона возбужденным атомом, равна KN 2 . Таким образом, наиболее вероятное число пар фотонов, выходящих из среды, равно n(KN 2)Г-(1 — KN 1). Иначе говоря, мы пустили в среду n фотонов и получили на выходе n(KN 2)Г-(1 – KN 1 фотонных пар; таким образом, кпд нашего лазера по «группированию» фотонов составляет 2/KN 2 (1 – KN 1). Эта величина имеет максимум при N 2 = N 1 , т.е. когда излучение накачки, переводящее атомы в возбужденное состояние за счет переходов N 1 -> N 3 -> N 2 , чуть-чуть недостаточно для создания инверсной населенности, т. е. система находится немного ниже порога генерации лазерного излучения. При KN 1 = КN 2 = 0,5 максимальный кпд = 0,5, т. е. можно рассчитывать, что примерно половина общего числа попадающих в систему фотонов будет сгруппирована. На практике будут возникать группы не только из двух, но и из трех и более фотонов, но даже с учетом этого наша схема выглядит вполне реальной.

Как будут вести себя фотонные пары? В физических процессах (преломление, рассеяние и т. д.) они должны вести себя точно так же, как образующие фотоны, однако в химических процессах (поглощение и т. д.) они, скорее всего, будут проявлять тенденцию к двухфотонному поглощению, и поэтому каждая пара поведет себя как один фотон с вдвое большей частотой. На этой основе, вероятно, можно создать уличные фонари, излучающие сгруппированный инфракрасный свет, который легко проходит сквозь туман и в то же время хорошо воспринимается глазом. А как бы вы отнеслись к «антизонтику», преобразующему свет пасмурного дня в ультрафиолетовое излучение для загара? Наконец, поскольку сгруппированные фотоны когерентны с тем фотоном, который первоначально попал в среду, соответствующие очки позволят непосредственно наблюдать изображение, полученное в инфракрасных лучах.

Дедал получает письмо

Майрон Л. Уолбаршт, профессор офтальмологии и биомедицинской техники, Медицинский центр университета Дьюка, Дарем, Сев. Каролина, США 23 июля 1980

Дорогая Ариадна!

Ваш друг Дедал рассматривал (с. 448, 26 июня 1980) использование сгруппированного света для возбуждения синих рецепторов глаза в результате двухфотонного поглощения и даже допускал возможность использования длинноволнового инфракрасного излучения для получения видимого света. Я прилагаю копию одной из своих опубликованных работ «Зрительная чувствительность глаза к инфракрасному излучению» (Journal of the Optical Society of America , 66, 1976, p. 339), в которой показано, что это действительно возможно. Надеюсь, что Дедал будет продолжать свои изыскания, но ему следует сознавать, что в наши дни наука движется вперед так быстро, что даже мечтатель может отстать от жизни.

Искренне Ваш М. Уолбаршт

(В дальнейшем сгруппированный свет будет пролит на вопрос о приоритете в статье « ».)

Дедал правильно рассудил, что зрительные рецепторы могут реагировать на «когерентную пару» фотонов с энергией, вдвое меньшей порога чувствительности рецептора. Эта идея была подтверждена исследователями с применением лазерной техники. На сходном принципе основан ряд приборов ночного видения. - Прим. ред.

Инфракрасный свет визуально недоступен зрению человека. Между тем длинные инфракрасные волны воспринимаются человеческим организмом как тепло. Некоторыми свойствами видимого света обладает инфракрасный свет. Излучение этой формы поддаётся фокусировке, отражается и поляризуется. Теоретически ИК-свет больше трактуется как инфракрасная радиация (ИР). Космическая ИР занимает спектральный диапазон электромагнитного излучения 700 нм — 1 мм. ИК-волны длиннее волн видимого света и короче радиоволн. Соответственно, частоты ИР выше частот микроволн и ниже частот видимого света. Частота ИР ограничена диапазоном 300 ГГц — 400 ТГц.

Инфракрасные волны удалось обнаружить британскому астроному Уильяму Гершелю . Открытие было зарегистрировано в 1800 году. Используя стеклянные призмы в своих опытах, учёный таким способом исследовал возможности разделения солнечного света на отдельные компоненты.

Когда Уильяму Гершелю пришлось измерять температуру отдельных цветов, обнаружился фактор увеличения температуры при последовательном прохождении следующего ряда:

  • фиолет,
  • синька,
  • зелень,
  • желток,
  • оранж,
  • красный.

Волновой и частотный диапазон ИК-радиации

Исходя из длины волны, учёные условно делят инфракрасное излучение на несколько спектральных частей. При этом нет единого определения границ каждой отдельной части.

Шкала электромагнитного излучения: 1 — радиоволны; 2 — микроволны; 3 — ИК-волны; 4 — видимый свет; 5 — ультрафиолет; 6 — лучи x-ray; 7 — гамма лучи; В — диапазон длин волн; Э — энергетика

Теоретически обозначены три волновых диапазона:

  1. Ближний
  2. Средний
  3. Дальний

Ближний ИК-диапазон отмечен длинами волн, приближенных до конечной части спектра видимого света. Примерный расчётный отрезок волны здесь обозначен длиной: 750 — 1300 нм (0,75 — 1,3 мкм). Частота излучения составляет примерно 215-400 Гц. Короткий ИК-диапазон излучат минимум тепла.

Средний ИК-диапазон (промежуточный), охватывает длины волн 1300-3000 нм (1,3 — 3 мкм). Частоты здесь измеряются диапазоном 20-215 ТГц. Уровень излучаемого тепла относительно невысок.

Дальний ИК-диапазон наиболее близок к диапазону микроволн. Расклад: 3-1000 мкм. Частотный диапазон 0,3-20 ТГц. Эту группу составляют короткие длины волн на максимальном частотном отрезке. Здесь излучается максимум тепла.

Применение инфракрасной радиации

ИК-лучам нашлось применение в различных сферах. Среди наиболее известных устройств — , тепловизоры, оборудование ночного видения и т.п. Коммуникационным и сетевым оборудованием ИК-свет используется в рамках проводных и беспроводных операций.


Пример работы электронного прибора — тепловизора, принцип действия которого основан на использовании инфракрасного излучения. И это лишь отдельно взятый пример из множества других

Пульты дистанционного управления оснащаются системой ИК-связи ближнего действия, где сигнал передаётся через ИК-светодиоды. Пример: привычная бытовая техника – телевизоры, кондиционеры, проигрыватели. Инфракрасным светом передаются данные по волоконно-оптическим кабельным системам.

Кроме того, излучение ИК-диапазона активно используется исследовательской астрономией для изучения космоса. Именно благодаря ИК-радиации удаётся обнаруживать космические объекты, невидимые глазу человека.

Малоизвестные факты, связанные с ИК-светом

Глаза человека действительно не могут видеть инфракрасные лучи. Но «видеть» их способна кожа тела человека, реагирующая на фотоны, а не только на тепловое излучение.

Поверхность кожи фактически выступает «глазным яблоком». Если солнечным днём выйти на улицу, закрыть глаза и протянуть к небу ладони, без особого труда можно обнаружить месторасположение солнца.

Зимой в комнате, где температура воздуха составляет 21-22ºС, будучи тепло одетыми (свитер, брюки). Летом в той же комнате, при той же температуре, люди также ощущают комфорт, но в более лёгкой одежде (шорты, футболка).

Объяснить сей феномен просто: несмотря на одинаковую температуру воздуха, стены и потолок помещения летом излучают в большем количестве волны дальнего ИК-диапазона, несомые солнечным светом (FIR – Far Infrared). Поэтому телом человека при одинаковых температурах, летом воспринимается больше тепла.


ИК-тепло воспроизводится любым живым организмом и неживым предметом. На экране тепловизора этот момент отмечается более чем отчётливо

Пары людей, спящие в одной кровати, непроизвольно являются передатчиками и приемниками FIR-волн по отношению друг к другу. Если человек находится в кровати один, он действует как передатчик FIR-волн, но уже не получает такие же волны в ответ.

Когда люди беседуют друг с другом, они непроизвольно отправляют и получают вибрации FIR-волн один от другого. Дружеские (любовные) объятия также активируют передачу FIR-излучения между людьми.

Как воспринимает ИК-свет природа?

Люди не в состоянии видеть световые лучи ИК-диапазона, но змеи семейства гадюковых или виперовых (например, гремучие) имеют сенсорные «впадины», которые используются для получения изображения в инфракрасном свете.

Это свойство позволяет змеям в полной темноте обнаруживать теплокровных животных. Змеи с двумя сенсорными «впадинами», как предполагается наукой, имеют некоторое восприятие глубины инфракрасного диапазона.


Свойства ИК змеи: 1, 2 — чувствительные зоны сенсорной впадины; 3 — мембранная впадина; 4 — внутренняя полость; 5 — MG волокно; 6 — наружная полость

Рыба успешно использует свет ближней области спектра (NIR – Near Infrared) для захвата добычи и для ориентации в акватории водоёмов. Это чувство NIR помогает рыбе безошибочно ориентироваться в условиях слабого освещения, в темноте либо в мутной воде.

Инфракрасное излучение играет важную роль для формирования погоды и климата Земли, также как солнечный свет. Общая масса солнечного света, поглощаемого Землей, в равном количестве ИК-излучения должна перемещаться от Земли обратно в космос. Иначе неизбежно глобальное потепление или глобальное похолодание.

Очевидна причина, по которой воздух быстро охлаждается сухой ночью. Низкий уровень влажности и отсутствие облаков на небе открывают свободный путь ИК-радиации. Инфракрасные лучи быстрее выходят в космическое пространство и, соответственно, быстрее уносят тепло.

Значительная часть , приходящая к Земле – это именно инфракрасный свет. Любой природный организм или предмет обладает температурой, а это значит — выделяет ИК-энергию. Даже предметы, априори являющиеся холодными (например, кубики льда), излучают ИК-свет.

Технический потенциал инфракрасной зоны

Технический потенциал ИК-лучей безграничен. Примеров масса. Инфракрасное отслеживание (самонаведение) применяется в системах пассивного управления ракетами. Электромагнитное излучение от цели, получаемое в инфракрасной части спектра, используется в этом случае.


Систем отслеживания цели: 1, 4 — камера сгорания; 2, 6 — относительно длинный выхлоп пламени; 5 — холодный поток, обходящий горячую камеру; 3, 7 — назначенная важная ИК сигнатура

Спутники погоды, оборудованные сканирующими радиометрами, производят тепловые изображения, которые затем позволяют аналитической методикой определять высоты и типы облаков, рассчитывать температуру суши и поверхностных вод, определять особенности поверхности океана.

Инфракрасное излучение является наиболее распространенным способом дистанционного управления различными приборами. На базе технологии FIR разрабатываются и выпускаются множество продуктов. Особо здесь отличились японцы. Вот лишь несколько примеров, популярных в Японии и по всему миру:

  • специальные накладки и обогреватели FIR;
  • пластины FIR для сохранения рыбы и овощей свежими долгое время;
  • керамическая бумага и керамика FIR;
  • тканевые FIR перчатки, куртки, автомобильные сиденья;
  • парикмахерский FIR-фен, снижающий повреждение волос;

Инфракрасная рефлектография (арт-консервация) применяется для изучения картин, помогает выявить лежащие в основе слои, не разрушая структуры. Этот приём, помогает обнаружить детали, скрытые под рисунком художника.

Таким способом определяется, является ли текущая картина оригинальным художественным произведением или всего лишь профессионально сделанной копией. Определяются также изменения, связанные с реставрационной работой над произведениями искусства.

ИК-лучи: влияние на здоровье людей

Благоприятное воздействие солнечного света на здоровье человека подтверждено научно. Однако чрезмерное пребывание под солнечным излучением потенциально опасно. Солнечный свет содержит ультрафиолетовые лучи, действие которых сжигает кожу тела человека.


Инфракрасные сауны массового пользования широко распространены в Японии и Китае. И тенденция на развитие этого способа оздоровления только усиливается

Между тем инфракрасное излучение дальнего диапазона волн обеспечивает все преимущества для здоровья, получаемые от естественного солнечного света. При этом полностью исключается опасное воздействие солнечной радиации.

Применением технологии воспроизводства ИК-лучей, достигается полный контроль температуры (), неограниченный солнечный свет. Но это далеко не все известные факты преимуществ инфракрасного излучения:

  • Инфракрасные лучи дальнего диапазона укрепляют сердечно-сосудистую систему, стабилизируют сердечный ритм, увеличивают сердечный выброс, уменьшая при этом диастолическое артериальное давление.
  • Стимуляция сердечно-сосудистой функции инфракрасным светом дальнего диапазона — идеальный способ поддержания в норме сердечно-сосудистой системы. Есть опыт американских астронавтов во время длительного космического полета.
  • ИК-лучи дальнего инфракрасного диапазона с температурой выше 40°C ослабляют и в конечном итоге убивает раковые клетки. Этот факт подтвержден Американской онкологической ассоциацией и Национальным институтом рака.
  • Инфракрасные сауны часто используются в Японии и Корее (терапия гипертермии или Waon-терапия) для лечения от сердечно-сосудистых заболеваний, особенно в части хронической сердечной недостаточности и периферических артериальных заболеваний.
  • Результаты исследований, опубликованные в журнале «Нейропсихиатрическая болезнь и лечение », показывают инфракрасные лучи как «медицинский прорыв» в лечении черепно-мозговых травм.
  • Инфракрасная сауна считается в семь раз более эффективной при выводе из организма тяжелых металлов, холестерина, спирта, никотина, аммиака, серной кислоты и других токсинов.
  • Наконец, FIR-терапия в Японии и Китае вышла на первое место среди эффективных способов лечения астмы, бронхита, простуды, гриппа, синусита. Отмечено, что FIR-терапия убирает воспаления, отеки, слизистые закупорки.

Инфракрасный свет и продолжительность жизни 200 лет

Как увидеть инфракрасный свет

В лазере фотон света, сталкиваясь с возбужденным атомом среды, стимулирует испускание другого фотона той же частоты. Вторичные фотоны в свою очередь вызывают испускание фотонов другими возбужденными атомами - в результате процесс излучения света идет лавинообразно. Но попробуем рассмотреть случай, когда активная среда лазера находится в докритическом состоянии, т. е. слишком разрежена, чтобы поддерживать лавинообразный процесс. В такой среде фотон может столкнуться с невозбуждеиным атомом, который, поглотив этот фотон, переходит в возбужденное состояние. Другой фотон, столкнувшись с этим возбужденным атомом, теперь может стимулировать эмиссию, и два фотона будут двигаться вместе, парой. В несколько более плотной среде и при чуть более интенсивной накачке эта пара фотонов может столкнуться с еще одним возбужденным атомом, результатом чего будет фотонный триплет. В целом, активную среду лазера покидает примерно столько же фотонов, сколько вошло в нее, однако выходящие фотоны образуют когерентные пары и тройки.

Такой «сгруппированный» свет обладает удивительными свойствами. Прежде всего он совершенно непривычен для глаза. Так, красный сгруппированный свет будет обычным образом отражаться от красных предметов. Но, поскольку каждая пара «красных» фотонов имеет в сумме энергию, равную энергии одного «синего» фотона, такой свет за счет двухфотонного поглощения станет возбуждать также рецепторы, чувствительные к синему цвету. Предмет, таким образом, будет одновременно выглядеть и красным, и синим, - наверное, переливчато-фиолетовым. Больше всего, впрочем, Дедала занимает инфракрасный сгруппированный свет. Все окружающие нас объекты в изобилии испускают длинноволновое инфракрасное излучение. Достаточно поэтому перед любым предметом поместить «группирователь фотонов» фирмы КОШМАР, который собирает фотоны в группы, суммарная энергия которых лежит в видимой области спектра, - и вот вам бесплатное освещение! Правда, в сгруппированном ИК-свете все предметы, скорее всего, будут иметь жуткий вид, так что лучше будет, если энергия группы фотонов придется на область ультрафиолета. Тогда, используя обычный люминофор, как в лампах дневного света, можно возбуждать его за счет многофотонного поглощения и получать видимый свет. Этот изящный прибор преобразует бесполезный инфракрасный фон в видимый свет - подобно тепловому насосу, перекачивающему тепло от тел с меньшей температурой к телам с более высокой температурой. Согласно законам термодинамики, эти устройства могут отбирать у окружающей среды гораздо больше энергии (тепла и света), чем необходимо для приведения их в действие.

New Scientist, June 26, 1980

Из записной книжки Дедала

Рассмотрим активную среду, в которой N 1 атомов находятся в основном состоянии и N 2 - в возбужденном состоянии с энергией Е. Рабочая частота равна в таком случае v = E/h, и если этой частоте соответствует плотность энергии?v, то интенсивность возбуждения N 1 -> N 2 составит BN 1 ?v, где В - вероятность перехода. Аналогично интенсивность стимулированной эмиссии равна BN 2 ?v. Пусть в систему входит n фотонов. Для каждого из иих вероятность быть поглощенным при переходе атома из состояния 1 в состояние 2 пропорциональна BN 1 ?; обозначим эту вероятность через KN 1 . Тогда число фотонов, поглощенных в системе, равно nKN 1 для малых KN 1 , а n(1 – KN 1) фотонов проходят через всю среду. Вероятность того, что каждый из этих фотонов стимулирует испускание фотона возбужденным атомом, равна KN 2 . Таким образом, наиболее вероятное число пар фотонов, выходящих из среды, равно n(KN 2)?(1 - KN 1). Иначе говоря, мы пустили в среду n фотонов и получили на выходе n(KN 2)?(1 – KN 1 фотонных пар; таким образом, кпд нашего лазера по «группированию» фотонов составляет 2/KN 2 (1 – KN 1). Эта величина имеет максимум при N 2 = N 1 , т.е. когда излучение накачки, переводящее атомы в возбужденное состояние за счет переходов N 1 -> N 3 -> N 2 , чуть-чуть недостаточно для создания инверсной населенности, т. е. система находится немного ниже порога генерации лазерного излучения. При KN 1 = КN 2 = 0,5 максимальный кпд = 0,5, т. е. можно рассчитывать, что примерно половина общего числа попадающих в систему фотонов будет сгруппирована. На практике будут возникать группы не только из двух, но и из трех и более фотонов, но даже с учетом этого наша схема выглядит вполне реальной.

Как будут вести себя фотонные пары? В физических процессах (преломление, рассеяние и т. д.) они должны вести себя точно так же, как образующие фотоны, однако в химических процессах (поглощение и т. д.) они, скорее всего, будут проявлять тенденцию к двухфотонному поглощению, и поэтому каждая пара поведет себя как один фотон с вдвое большей частотой. На этой основе, вероятно, можно создать уличные фонари, излучающие сгруппированный инфракрасный свет, который легко проходит сквозь туман и в то же время хорошо воспринимается глазом. А как бы вы отнеслись к «антизонтику», преобразующему свет пасмурного дня в ультрафиолетовое излучение для загара? Наконец, поскольку сгруппированные фотоны когерентны с тем фотоном, который первоначально попал в среду, соответствующие очки позволят непосредственно наблюдать изображение, полученное в инфракрасных лучах.

Дедал получает письмо

Майрон Л. Уолбаршт, профессор офтальмологии и биомедицинской техники, Медицинский центр университета Дьюка, Дарем, Сев. Каролина, США 23 июля 1980

Дорогая Ариадна!

Ваш друг Дедал рассматривал (с. 448, 26 июня 1980) использование сгруппированного света для возбуждения синих рецепторов глаза в результате двухфотонного поглощения и даже допускал возможность использования длинноволнового инфракрасного излучения для получения видимого света. Я прилагаю копию одной из своих опубликованных работ «Зрительная чувствительность глаза к инфракрасному излучению» (Journal of the Optical Society of America , 66, 1976, p. 339), в которой показано, что это действительно возможно. Надеюсь, что Дедал будет продолжать свои изыскания, но ему следует сознавать, что в наши дни наука движется вперед так быстро, что даже мечтатель может отстать от жизни.

Искренне Ваш М. Уолбаршт

(В дальнейшем сгруппированный свет будет пролит на вопрос о приоритете в статье «Еще раз об инфракрасном зрении».)

Из книги Тайны лунной гонки автора Караш Юрий Юрьевич

Соглашения в рамках ООН: свет в конце тоннеля или тупика? «Тоннель»Не хотелось, чтобы у читателя складывалось впечатление, будто шестидесятые годы были для советско-американского сотрудничества в космосе временем бесплодных надежд, утраченных иллюзий и упущенных

Из книги Парад всемирных выставок автора Мезенин Николай Александрович

Париж 1878. „РУССКИЙ СВЕТ" Во Франции 1873 - 1879 гг. в целом были периодом кризиса и упадка, что наблюдалось и по всей Европе. Но Маркс, имея в виду 1878 г., отмечал, что в течение этого «года, столь неблагоприятного для всех других предприятий, железные дороги процветали; но это

Из книги CCTV. Библия видеонаблюдения [Цифровые и сетевые технологии] автора Дамьяновски Владо

2. Свет и телевидение Да будет свет. Немного историиСвет - это одно из основных и величайших явлений природы, свет является не только необходимым условием жизни на планете, но и играет важную роль в техническом прогрессе и изобретениях в сфере визуальной коммуникации:

Из книги История выдающихся открытий и изобретений (электротехника, электроэнергетика, радиоэлектроника) автора Шнейберг Ян Абрамович

ГЛАВА 8 Человеческий гений создает электрический свет, «подобный солнечному» Создание П.Н. Яблочковым «электрической свечи»Создание источников электрического освещения является одним из основополагающих открытий в истории человечества. Первым, кто произнес