Что такое технологический процесс процессора и на что он влияет. Техпроцесс видеокарты: его влияние и что это такое? Техпроцесс мкм

Так как именно техпроцесс влияет на увеличение производительности процессора, за счет конструктивных изменений. Хочу отметить, что техпроцесс, является общим понятием, как для центральных процессоров, так и для графических процессоров , которые используются в видеокартах.

Основным элементом в процессорах являются транзисторы – миллионы и миллиарды транзисторов. Из этого и вытекает принцип работы процессора. Транзистор, может, как пропускать, так и блокировать электрический ток, что дает возможность логическим схемам работать в двух состояниях – включения и выключения, то есть во всем хорошо известной двоичной системе (0 и 1).

Техпроцесс – это, по сути, размер транзисторов. А основа производительности процессора заключается именно в транзисторах. Соответственно, чем размер транзисторов меньше, тем их больше можно разместить на кристалле процессора.

Новые процессоры Intel выполнены по техпроцессу 22 нм. Нанометр (нм) – это 10 в -9 степени метра, что является одной миллиардной частью метра. Чтобы вы лучше смогли представить насколько это миниатюрные транзисторы, приведу один интересный научный факт: « На площади среза человеческого волоса, с помощью усилий современной техники, можно разместить 2000 транзисторных затворов!»

Если брать во внимание современные процессоры , то количество транзисторов, там уже давно перевалило за 1 млрд.

Ну а техпроцесс у первых моделей начинался совсем не с нанометров, а с более объёмных величин, но в прошлое мы возвращаться не будем.

Примеры техпроцессов графических и центральных процессоров

Сейчас мы рассмотрим парочку последних техпроцессов, которые использовали известные производители графических и центральных процессоров.

1. AMD (процессоры):

Техпроцесс 32 нм. К таковым можно отнести Trinity, Bulldozer, Llano. К примеру, у процессоров Bulldozer, число транзисторов составляет 1,2 млрд., при площади кристалла 315 мм2.

Техпроцесс 45 нм. К таковым можно отнести процессоры Phenom и Athlon. Здесь примером будет Phemom, с числом транзисторов 904 млн. и площадью кристалла 346 мм2.

2. Intel:

Техпроцесс 22 нм. По 22-нм нормам построены процессоры Ivy Bridge (Intel Core ix - 3xxx). К примеру Core i7 – 3770K, имеет на борту 1,4 млрд. транзисторов, с площадью кристалла 160 мм2, видим значительный рост плотности размещения.


Техпроцесс 32 нм. К таковым можно отнести процессоры Intel Sandy Bridge (Intel Core ix – 2xxx). Здесь же, размещено 1,16 млрд. на площади 216 мм2.

Здесь четко можно увидеть, что по данному показателю, Intel явно обгоняет своего основного конкурента.

3. AMD (ATI) (видеокарты):

Техпроцесс 28 нм. Видеокарта Radeon HD 7970

4. Nvidia:

Техпроцесс 28 нм. Geforce GTX 690


Вот мы и рассмотрели понятие техпроцесса в центральных и графических процессорах. На сегодняшний день разработчиками планируется покорить техпроцесс в 14 нм, а затем и 9, с применением других материалов и методов. И это далеко не предел!

Привет, друзья! Возможно, погружаясь в тематику компьютерного железа, вы встречали такое понятие как техпроцесс видеокарты, что это такое, на что влияет и какой из них лучший, расскажу в сегодняшней публикации. Все готово, поехали.)

Где там транзисторы

Любой процессор состоит из огромного количества микроскопических транзисторов – что ЦП, что графический чип. Однако транзисторы здесь не совсем привычные – например, не такие, как в радиоприемнике. Реализованы они на куске кремния, из которого состоит процессор.

Сегодня размеры этих компонентов измеряются уже в нанометрах – одной миллиардной части метра – например, 40 нм, 22 нм или 16 нм. Чем меньше цифра, тем тоньше техпроцесс и тем больше транзисторов умещается на той же площади кристалла.

Вообще, техпроцессом называется совокупность действий оборудования по изготовления какой-либо детали, в нашем случае микросхемы. Однако применительно к процессорам и графическим чипам такое обозначение – разрешение печатного оборудования, которое создает компоненты на поверхности кристалла.

Как узнать техпроцесс конкретной детали? Он всегда указан в сопроводительной документации.

Однако учитывайте, что во многих интернет-магазинах, в характеристиках товара этого параметра нет, поэтому при заказе комплектующих, необходимо уточнять детали у консультанта. Как вариант, можно узнать эту информацию на официальном сайте производителя.

Влияние техпроцесса

Технологии делаются все совершеннее, позволяя уменьшить техпроцесс, увеличив тем самым количество транзисторов на одной и той же площади. Что значит это в практическом плане?
Увеличение количества транзисторов позволяет увеличить количество логических блоков и тем самым производительность процессора при тех же физических размерах. Как вариант, можно не изменять количество транзисторов, но уменьшить размеры компонента.

При уменьшении размеров транзисторов, снижается тепловыделение и энергопотребление. Благодаря этому, можно увеличить количество ядер процессора без риска перегрева, что негативно сказывается на производительности. Особенно это актуально для лэптопов и планшетов – да, в крутых моделях тоже установлены видеокарты, созданные по тому же принципу.

Переход на новый, более совершенный техпроцесс, требует от производителя железа проведения фундаментальных исследований, разработки нового оборудования, его создания и обкатки.

По этой причине новые модели центральных и графических процессоров стоят чрезвычайно дорого. Но за то, чтобы быть на гребне волны прогресса, никаких денег не жалко, не правда ли?

Также хочу акцентировать внимание на том, что обкатка нового техпроцесса происходит не сразу, и поэтому первые партии новых комплектующих могут получиться откровенно неудачными.

При увеличении площади кристалла, сложность только возрастает. Увы, лепить многоядерные процессоры по новой технологии вот так «с лету», не получится – никто не хочет работать себе в убыток и разбираться потом с возмущенными покупателями.

Дальнейшие перспективы

Некоторые из вас, вероятно, подумали, что развитие технологий – дело времени, и техпроцесс можно уменьшать до бесконечности. Увы, это не совсем верно. Физические свойства материи имеют определенные рамки, и со временем настанет тот предел, меньше которого создавать транзисторы, попросту не получится.
Вот только каким будет их размер и когда это будет – пока не совсем понятно. Вполне вероятно, что к тому времени изобретут какую-нибудь принципиально иную технологию, а процессоры на основе кремниевого кристалла канут в Лету, как это случилось с ламповой электроникой.

Надеюсь, исходя из вышеизложенного, вам уже понятен ответ на вопрос: 14 нм или 28 нм – что лучше. Если я не вполне понятно излагал свои мысли, то лучше 14 нм, однако стоят, созданные по такому техпроцессу компоненты, дороже.

А вообще, чтобы разобраться, какой девайс вам лучше купить при сборке или апгрейде компа, советую ознакомиться с публикациями « » и « ». О том, где лучше покупать комплектующие для системного блока, вы можете почитать .

В качестве возможного варианта, советую обратить внимание на видеокарты серии 1060 – например, ASUS GeForce GTX 1060 DUAL OC . За приемлемую цену вы сможете с комфортом обрабатывать видеоролики и запускать новые игры (правда, некоторые из них не на максимальных, а на средних настройках качества графики). На ближайшие несколько лет такого девайса, вам хватит с головой, я это гарантирую.

На этом я с вами прощаюсь. Не забудьте поставить лайк репосту этой статьи в социальных сетях. Также на новостную рассылку, чтобы быть в курсе последних обновлений моего чрезвычайно полезного блога.

Технологический процесс (электронная литографическая промышленность, техпроцесс ,мкм, nm /нм; tecnology node, process tecnology eng . ) – свод норм для изготовления полупроводниковых (п /п ) микросхем. В частности, самой важной характеристикой является размер полупроводниковых элементов, которые состоят из , ключей, и других элементов.

Измеряются эти элементы в микронах (мкм , микрометр) и нанометрах (нм , nm ). Чем меньше базовые элементы, тем лучше их характеристики.

Преимущества более «тонкого» техпроцесса:

· Меньшее тепловыделение . Получается это за счёт уменьшения размеров дорожек, разводки, затворов и требуемых токов для нормального функционирования. Также из-за меньших токов утечки.

· Большее количество транзисторов , которые можно «упаковать» в одном и том же пространстве более компактно, и создавать чипы меньше. При этом более технологичные, с большим количеством элементов.

· Меньшее потребление энергии. Чем меньше элементы, тем меньшие токи нужны для управления ими.

· Меньшая стоимость производства. Чем меньше чипы по размеру, тем больше чипов можно разместить на полупроводниковых пластинах. Это увеличивает количество готовых продуктов при тех же затратах.

Этапы производства микрочипов:



1. Сначала выращивают кристаллический кремний и формируют его форму для распиливания на круглые пластины.

3. Далее следует эпитаксиальное нанесение равномерного слоя подобного подложке вещества на атомном уровне, которое служит как фундамент и выравнивающий, общий уровень . Так же применяется маскирующий слой , который защищает нанесённый слой атомов кремния от воздействий на следующих этапах.

4. Следующий шаг – фотолитография . Под действием специального излучения с разной длинной волн , на поверхности пластины, появляются химические маркеры, которые войдут в реакцию с последующими активными веществами.

5. Химическим методом и методом диффузии , под действием активных веществ (фосфор , бор ), образуются p — и n — области, микро-переходы и желобки , которые станут будущими элементами.

6. Следует фотолитографическая обработка в слое оксида определённых участков, которая даст маркеры (легированные участки) для нанесения металлических элементов (разводка, контакты), методом вакуумного металлизирования. Излишки металла удаляются, а тот который нанесён правильно, термически закрепляют (впаивают). Таким образом, образуются готовые элементы микрочипа.

7. Нанесение, нужного количества уровней диэлектрика и металла с последующей фотолитографией и обработкой (слоёв может быть сколько угодно, всё зависит от допустимой высоты). Над самым верхним слоем, наносятся несколько слоёв металла и диэлектрика для защиты и правильного рассеивания тепла.

8. Пассивация пластины, тесты, нарезка на микрочипы, монтаж на корпус процессора и соединение выводов, отбраковка.

Место производства, чистые комнаты.

Для производства микросхем, применяются специальные «чистые комнаты » с фильтрами и статическими механизмами для удержания мелких частиц пыли, волос, пуха & etc . Так как даже пылинка, попавшая на микрочип в процессе производства, может нарушить его работу , не говоря уже о волосах и пухе.

Перед входом, рабочие надевают специальные костюмы , очки и шапки, а также проходят специальные процедуры очистки .


К тому же все сотрудники дышат через специальные фильтры, чтобы полностью исключить источники инородных объектов.

Самые крупные мощности литографических производств имеются у крупнейших компаний подрядчиков: и . Крупную долю на мировом рынке производства микрочипов имеет Intel , но компания занимается производством чипов только для своих нужд. Возможно в будущем данный подход изменится. Дружественным компаниям, Intel всё же оказывает контрактные услуги, но в основном только акционерам.

Компания Intel , первой планирует запустить производство микрочипов с применением трёхмерных транзисторов (3G, FinFET ).


С переходом на всё более тонкий техпроцесс, производителям приходится вкладывать всё больше средств на разработку методов реализации нового техпроцесса. Также уходит больше времени на строительство новых фабрик для производства.

Поэтому, многие производители объединяются в группы и совместно вкладывают средства в разработку техпроцессов и строительство новых фабрик.

В сокращении издержек, также помог бы переход на более крупные пластины 450 мм , но это потребует строительства большинства фабрик с нуля и производства совершенно нового оборудования, что затратно. Переход планируется в 2012-13 году.

Рассказываем об одной из главной характеристик мобильных чипсетов.

Процессор современного смартфона - сложный механизм, включающий в себя тысячи компонентов. Такие показатели, как частота и количество ядер, постепенно теряют смысл, а на смену им приходит понятие техпроцесса, характеризующее производительность и энергоэффективность процессора.

Что такое техпроцесс?

Процессор включает в себя тысячи транзисторов, которые пропускают или блокируют электрический ток, что позволяет логическим схемам работать в двоичной системе. Благодаря уменьшению размер транзисторов и расстояния между ними производители добиваются от чипсета большей продуктивности.

Уменьшенные транзисторы потребляют меньше энергии, при этом не утрачивая и производительность. Несмотря на то, что размер транзисторов напрямую не влияет на мощность, этот параметр стоит рассматривать как одну из характеристик, оказывающих влияние на скорость выполнения задач за счет конструктивных изменений в работе устройства. Размер транзистора по сути и характеризует техпроцесс процессоров.

За счет уменьшения расстояния между компонентами процессора уменьшается и объем энергии, которая необходима для их взаимодействия. Благодаря этому чипы с меньшим техпроцессом показывают большую автономность по сравнению с чипами с большим показателем технологического процесса. В отличие от большинства параметров смартфона, чем меньше число, характеризующее техпроцесс, тем лучше. В нашем случае это нанометры (нм).

Развитие техпроцесса в смартфонах

В первом Android-смартфоне HTC Dream (2008 год) процессор работал на 65-нм чипсете. В сегодняшних среднебюджетных моделях этот параметр варьируется в пределах 28-14 нм. Флагманские и игровые смартфоны часто оснащены 14 и даже 10-нм процессорами, поэтому они мощные, энергоэффективные и в меньшей степени подвержены нагреванию. Учитывая, что развитие технологий нацелено на машинное обучение и искусственный интеллект, для достижения новых высот в производительности техпроцесс с большой вероятностью будет уменьшен до 5, а потом и до 1 нм.

Выбирая смартфон, важно отталкиваться не только от количества ядер и тактовой частоты, но и обращать внимание на техпроцесс. Именно этот параметр косвенно укажет на актуальность чипсета, производительность, склонность к перегреву и автономность. На сегодняшний день устройства в среднем ценовом сегменте уже оснащены 14-нм процессорами, что на данный момент можно назвать актуальным и сбалансированным решением для любого современного смартфона.

На этой неделе прошло собрание представителей компаний, которые используют для проектирования конструкторские пакеты компании Synopsys. Доклады были посвящены проблемам дальнейшей судьбы полупроводниковой отрасли. Точнее, рассматривались вопросы, связанные с дальнейшим снижением технологических норм. Мы уже слышали, что производители, например, компания TSMC, планирует в этом году начать строить завод для выпуска 3-нм чипов, как и сообщалось о разработке прототипов 2-нм транзисторов. Проблема же заключается в том, что экономический и другие эффекты от снижения технологических норм исчезают быстрее, чем снижается размер элемента на кристалле. И всё хорошее может прекратиться уже на стадии выпуска 5-нм чипов, не говоря о выпуске решений с меньшими нормами.

реклама

Так, представитель компании Qualcomm сообщил, что при переходе с 10-нм производства на 7-нм рост скорости переключения транзисторов может снизиться с предыдущих 16 % прироста до минимального уровня. Экономия по потреблению с 30-% прироста снизится до 10-25 %, а снижение площади чипов уменьшится с 37 % до 20-30 %. При переходе на 5-нм техпроцесс площадь продолжит уменьшаться с хорошим уровнем масштабирования, но что касается получения выгод по производительности и потреблению, то в этом уверенности нет. К тому же, структура в виде FinFET транзисторов полностью перестанет работать после технологических норм 3,5 нм. Поэтому, в частности, Samsung готовится уже через два года использовать в рамках 4-нм техпроцесса затворы в виде горизонтальных полностью окружённых нано-проводников (плоских или круглых).